ГлавнаяСбор Сушка   Поиск
     
     
Лекарственные растения на букву А Лекарственные растения на букву Б Лекарственные растения на букву В
Лекарственные растения на букву Г Лекарственные растения на букву Д Лекарственные растения на букву Е
Лекарственные растения на букву Ж Лекарственные растения на букву З Лекарственные растения на букву И
Лекарственные растения на букву К Лекарственные растения на букву Л Лекарственные растения на букву М
Лекарственные растения на букву Н Лекарственные растения на букву О Лекарственные растения на букву П
Лекарственные растения на букву Р Лекарственные растения на букву С Лекарственные растения на букву Т
Лекарственные растения на букву У Лекарственные растения на букву Ф Лекарственные растения на букву Х
Лекарственные растения на букву Ц Лекарственные растения на букву Ч Лекарственные растения на букву Ш
Лекарственные растения на букву Щ Лекарственные растения на букву Э Лекарственные растения на букву Ю,Я
 

Функция в биологии это


Функция биологическая - это... Что такое Функция биологическая?


Функция биологическая
(от лат. functio деятельность, исполнение, отправление) – деятельность клетки, органа, организма, проявляющаяся как физиологический процесс или совокупность механизмов действия, присуща каждой структурной организации материи: всасывания, моторная, транспортная, адаптационно-трофическая, защитная, генеративная  и мн. др.

Словарь терминов по физиологии сельскохозяйственных животных. Болгарчук Роман. 2009.

  • Функциональная система
  • Фэцес

Смотреть что такое "Функция биологическая" в других словарях:

  • Биологическая функция — * біялагічная функцыя * biological function ключевое понятие биологических и др. дисциплин. Генетики, исследователи биологии клетки, структурные биологи, специалисты биоинформатики и биофизические химики используют этот термин, подразумевая… …   Генетика. Энциклопедический словарь

  • Биологическая деструкция — Биологические деструктивные процессы разрушение клеток и тканей в ходе жизнедеятельности организма или после его смерти. Эти изменения широко распространены и встречается как в норме, так и в патологии. Биологическая деструкция, наряду с… …   Википедия

  • Углеводы — Структурная формула лактозы  содержащегося в молоке дисахарида Углеводы (сахара, сахариды)  органические вещества, содержащие карбонильную гру …   Википедия

  • Медицина — I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… …   Медицинская энциклопедия

  • КОГЕН — (Cohen) Герман (1842 1918) немецкий философ, основатель и виднейший представитель марбургской школы неокантианства. Основные работы: ‘Теория опыта Канта’ (1885), ‘Обоснование Кантом этики’ (1877), ‘Обоснование Кантом эстетики’ (1889), ‘Логика… …   История Философии: Энциклопедия

  • Модель биологического нейрона — Модель биологического нейрона  математическое описание свойств нейронов, целью которого является точное моделирование процессов, протекающих в таких нервных клетках. В отличие от подобного точного моделирования, при создании сетей из… …   Википедия

  • ПегИнтрон — Действующее вещество ›› Пэгинтерферон альфа 2b (Peginterferon alfa 2b) Латинское название PegIntron АТХ: ›› L03AB Интерфероны Фармакологическая группа: Иммуномодуляторы Нозологическая классификация (МКБ 10) ›› B18.0 Хронический вирусный гепатит B …   Словарь медицинских препаратов

  • Смерть — У этого термина существуют и другие значения, см. Смерть (значения). Человеческий череп часто используется в качестве символа смерти Смерть (гибель) прекращение, остановка …   Википедия

  • Вечный сон — Смерть (гибель)  необратимое прекращение, остановка жизнедеятельности организма. Для одноклеточных живых форм завершением периода существования отдельного организма может являться как смерть, так и митотическое деление клетки. В медицине… …   Википедия

  • Кончина — Смерть (гибель)  необратимое прекращение, остановка жизнедеятельности организма. Для одноклеточных живых форм завершением периода существования отдельного организма может являться как смерть, так и митотическое деление клетки. В медицине… …   Википедия


physiology_animals.academic.ru

Функция (биология) - Function (biology)

В биологии , функция была определена во многих отношениях. В физиологии , это просто то , что делает орган, ткань, клетка или молекула. В эволюционной биологии , это является причиной какой - то объект или процесс происходил в системе , которая развивалась через естественный отбор . Эта причина , как правило , что она достигает какой - то результат, как , например, хлорофилл помогает захватить энергию солнечного света в процессе фотосинтеза . Таким образом, организм , который содержит больше шансов выжить и воспроизвести, другими словами, функция увеличивает организма пригодности . Характерным , который помогает в процессе эволюции называется адаптацией ; другие характеристики могут быть нефункциональные spandrels , хотя они , в свою очередь , может впоследствии быть кооптированы эволюции для обслуживания новых функций.

В философии биологии , говорить о функции неизбежно предполагает своего рода телеологической цели, даже если естественный отбор работает без каких - либо целей в будущем. Все же, биологи часто используют телеологический язык как условное обозначение для функции. В современной философии биологии, существует три основные счета функции в биологическом мире: теории причинной роли, выбранный эффекта и цели вклада.

В пре-эволюционной биологии

В физиологии , функция представляет собой деятельность или процесс , осуществляемый с помощью системы в организме , такие , как ощущения или локомоции у животного. Это понятие функции , в отличие от формирования (соответственно Аристотель Эргона и Morphe ) занимает центральное место в биологических объяснениях в классической древности . В более современные времена он являлся частью +1830 дискуссии Кювье-Жоффруа , где Кювье утверждал , что структура животного было обусловлено его функциональными потребностями, в то время как Жоффруа предложил структуру каждого животного была изменена из общего плана.

В эволюционной биологии

Функция может быть определена различными способами, в том числе в адаптации, в качестве вклада в эволюционной приспособленности, в поведении животных, и, как описано ниже, а также в какой-то причинной роли или цели в философии биологии.

Приспособление

Функциональная характеристика известна в эволюционной биологии как адаптация и стратегия исследований для исследования того , является ли адаптивной известен как символ адаптационизм . Несмотря на то, если предположить , что характер функционально может быть полезным в исследовании, некоторые характеристики организмов не являются функциональными, выполнены в виде случайных spandrels , побочные эффекты соседних функциональных систем.

Естественный отбор

С точки зрения естественного отбора , биологические функции существуют , чтобы способствовать пригодности , увеличивая вероятность того, что организм будет выжить , чтобы воспроизвести . Например, функция хлорофилла в растении является захватить энергию солнечного света для фотосинтеза , что способствует эволюционному успеху .

В этологии

Этолог Нико Тинберген назвал четыре вопроса, на основе Аристотель «s четыре причины , что биолог может попросить , чтобы помочь объяснить поведение , хотя они были обобщены на более широкий круг. 1) Механизм: Какие механизмы вызывают у животного вести себя , как это делает? 2) Онтогенез : Какие развития механизмов в эмбриологии животного (и его молодости, если он узнает ) создал структуры , которые вызывают поведение? 3) Функция / адаптация: Какова эволюционная функция поведения? 4) эволюция: Что такое филогенез поведения, или, другими словами, когда это впервые появляются в истории эволюции животного? Эти вопросы взаимосвязаны, так что, например, адаптивная функция ограничиваются эмбриональным развитием.

В философии биологии

Функция не совпадает с целью в телеологической смысле, то есть, обладая сознательное психическое намерение достичь цели. В философии биологии , эволюция слепой процесс , который не имеет «цели» на будущее. Например, дерево не растет цветы для каких - либо целей, но делает это просто потому , что она развивалась , чтобы сделать это. Для того, чтобы сказать : «дерево растет цветы привлечь опылителей » было бы неправильно , если «до» означает цели. Функция описывает то , что что - то делает , а не то , что его «цель» есть. Однако телеологический язык часто используется биологами как стенографический способ описания функции, хотя его применимость оспаривается.

В современной философии биологии, существует три основные счета функции в биологическом мире: теории причинной роли, выбранный эффекта и цели вклада.

Причинная роль

Причинные теории роли биологической функции проследить их происхождение назад к работе 1975 г. Роберт Cummins. Cummins определяет функциональную роль компонента системы, чтобы быть причинно-следственная, что компонент имеет на более крупную систему, содержащую. Например, сердце имеет фактическую причинную роль перекачки крови в кровеносной системе; Таким образом, функция сердца перекачивать кровь. Эта учетная запись была отклонена на том основании, что она слишком ослаблена понятие функции. Например, сердце также имеет причинно-следственную связь производить звук, но мы не будем рассматривать производить звук как функция сердца.

Выбранный эффект

Отдельные теории эффекта биологических функций считают , что функция биологического признака является функцией, черта была выбрана для , как утверждает Рут Милликен. Например, функция сердца перекачивать кровь, потому что это действие , для которого сердце было выбрано для эволюции. Другими словами, перекачивать кровь является причиной , что сердце эволюционировал. Эта учетная запись была подвергнута критике за то , что слишком ограничительными понятие функции. Это не всегда ясно , какое поведение способствовало выбору признака, как и биологические свойства могут иметь функции, даже если они не были выбраны для. Благоприятные мутации первоначально не выбраны, но у них есть функции.

Цель вклад

Теории Цели вклада стремятся вырезать середину между причинной ролью и отдельными теориями эффекта, как и с Boorse (1977). Boorse определяет функцию биологического признака , чтобы быть статистически типичным причинным вкладом этого признака к выживанию и размножению. Так, например, зебра иногда говорят, работает по запутанным хищников . Эта роль зебры будет способствовать выживанию и воспроизводству зебры, и поэтому непонятные хищники будут сказаны, что функция зебра. В соответствии с этой учетной записью, или нет конкретной причинная роль признака является его функция зависит от того, способствует ли эта причинная роль для выживания и размножения этого организма.

Смотрите также

Рекомендации

ru.qwe.wiki

Биология — Википедия

Биоло́гия (греч. βιολογία; от др.-греч. βίος — «жизнь» + λόγος — «учение, наука»[1]) — наука о живых существах и их взаимодействии со средой обитания. Изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой[2].

Как самостоятельная наука биология выделилась из естественных наук в XIX веке, когда учёные обнаружили, что все живые организмы обладают некоторыми общими свойствами и признаками, в совокупности не характерными для неживой природы. Термин «биология» был введён независимо несколькими авторами: Фридрихом Бурдахом в 1800 году, Готфридом Рейнхольдом Тревиранусом в 1802 году[3] и Жаном Батистом Ламарком в 1802 году.

В настоящее время биология — стандартный предмет в средних и высших учебных заведениях всего мира. Ежегодно публикуется более миллиона статей и книг по биологии, медицине, биомедицине[4] и биоинженерии.

Называют пять принципов, объединяющих все биологические дисциплины в единую науку о живой материи[уточнить][5][6]:

  • Клеточная теория — учение обо всём, что касается клеток. Все живые организмы состоят как минимум из одной клетки — основной структурно-функциональной единицы организмов. Базовые механизмы и химия всех клеток во всех земных организмах сходны; клетки происходят только от ранее существовавших клеток, которые размножаются путём клеточного деления. Клеточная теория описывает строение клеток, их деление, взаимодействие с внешней средой, состав внутренней среды и клеточной оболочки, механизм действия отдельных частей клетки и их взаимодействия между собой.
  • Эволюция. Через естественный отбор и генетический дрейф наследственные признаки популяции изменяются из поколения в поколение.
  • Теория гена. Признаки живых организмов передаются из поколения в поколение вместе с генами, которые закодированы в ДНК. Информация о строении живых существ или генотип используется клетками для создания фенотипа, наблюдаемых физических или биохимических характеристик организма. Хотя фенотип, проявляющийся за счёт экспрессии генов, может подготовить организм к жизни в окружающей его среде, информация о среде не передаётся назад в гены. Гены могут изменяться в ответ на воздействия среды только посредством эволюционного процесса.
  • Гомеостаз. Физиологические процессы, позволяющие организму поддерживать постоянство своей внутренней среды независимо от изменений во внешней среде.
  • Энергия. Атрибут любого живого организма, существенный для его состояния.

Клеточная теория[править | править код]

Клетка — элементарная структурно-функциональная единица живых организмов. Согласно клеточной теории, всё живое состоит из одной или множества клеток, либо из продуктов секреции клеток, например: раковины, волосы, ногти. Все клетки сходны по своему химическому составу и общему строению. Клетка происходит только из другой материнской клетки путём её деления, и все клетки многоклеточного организма происходят из одной оплодотворённой яйцеклетки. Даже протекание патологических процессов, таких как бактериальная или вирусная инфекция, зависит от клеток, являющихся их фундаментальной частью[7].

Эволюция[править | править код]

Центральная организующая концепция в биологии состоит в том, что жизнь со временем изменяется и развивается посредством эволюции, и что все известные формы жизни на Земле имеют общее происхождение. Это обусловило сходство основных единиц и процессов жизнедеятельности, упоминавшихся выше. Понятие эволюции было введено в научный лексикон Жаном-Батистом Ламарком в 1809 году. Чарльз Дарвин через пятьдесят лет установил, что её движущей силой является естественный отбор, так же как искусственный отбор сознательно применяется человеком для создания новых пород животных и сортов растений[8]. Позже в синтетической теории эволюции дополнительным механизмом эволюционных изменений был постулирован генетический дрейф.

Эволюционная история видов, описывающая их изменения и генеалогические отношения между собой, называется филогенез. Информация о филогенезе накапливается из разных источников, в частности, путём сравнения последовательностей ДНК или ископаемых остатков и следов древних организмов. До XIX века считалось, что в определённых условиях жизнь может самозарождаться. Этой концепции противостояли последователи принципа, сформулированного Уильямом Гарвеем: «всё из яйца» (лат. Omne vivum ex ovo), основополагающего в современной биологии. В частности, это означает, что существует непрерывная линия жизни, соединяющая момент первоначального её возникновения с настоящим временем. Любая группа организмов имеет общее происхождение, если у неё имеется общий предок. Все живые существа на Земле, как ныне живущие, так и вымершие, происходят от общего предка или общей совокупности генов. Общий предок всех живых существ появился на Земле около 3,5 млрд лет назад. Главным доказательством теории общего предка считается универсальность генетического кода (см. происхождение жизни).

Теория гена[править | править код]

Основная статья: Ген

Форма и функции биологических объектов воспроизводятся из поколения в поколение генами, которые являются элементарными единицами наследственности. Физиологическая адаптация к окружающей среде не может быть закодирована в генах и быть унаследованной в потомстве (см. Ламаркизм). Примечательно, что все существующие формы земной жизни, в том числе, бактерии, растения, животные и грибы, имеют одни и те же основные механизмы, предназначенные для копирования ДНК и синтеза белка. Например, бактерии, в которые вводят ДНК человека, способны синтезировать человеческие белки.

Совокупность генов организма или клетки называется генотипом. Гены хранятся в одной или нескольких хромосомах. Хромосома — длинная цепочка ДНК, на которой может быть множество генов. Если ген активен, то последовательность его ДНК копируется в последовательности РНК посредством транскрипции. Затем рибосома может использовать РНК, чтобы синтезировать последовательность белка, соответствующую коду РНК, в процессе, именуемом трансляция. Белки могут выполнять каталитическую (ферментативную) функцию, транспортную, рецепторную, защитную, структурную, двигательную функции.

Гомеостаз[править | править код]

Гомеостаз — способность открытых систем регулировать свою внутреннюю среду так, чтобы поддерживать её постоянство посредством множества корректирующих воздействий, направляемых регуляторными механизмами. Все живые существа, как многоклеточные, так и одноклеточные, способны поддерживать гомеостаз. На клеточном уровне, например, поддерживается постоянная кислотность внутренней среды (pH). На уровне организма у теплокровных животных поддерживается постоянная температура тела. В ассоциации с термином экосистема под гомеостазом понимают, в частности, поддержание растениями и водорослями постоянной концентрации атмосферного кислорода и диоксида углерода на Земле.

Энергия[править | править код]

Выживание любого организма зависит от постоянного притока энергии. Энергия черпается из веществ, которые служат пищей, и посредством специальных химических реакций используется для построения и поддержания структуры и функционирования клеток. В этом процессе молекулы пищи используются как для извлечения энергии, так и для синтеза биологических молекул собственного организма.

Первичным источником энергии для подавляющего большинства земных существ является световая энергия, главным образом солнечная, однако некоторые бактерии и археи получают энергию посредством хемосинтеза. Световая энергия посредством фотосинтеза превращается растениями в химическую (органические молекулы) в присутствии воды и некоторых минералов. Часть полученной энергии затрачивается на наращивание биомассы и поддержание жизни, другая часть теряется в виде тепла и отходов жизнедеятельности. Общие механизмы превращения химической энергии в полезную для поддержания жизни называются дыхание и метаболизм.

Уровни организации жизни[править | править код]

Живые организмы представляют собой высокоорганизованные структуры, поэтому в биологии выделяют ряд уровней организации. В различных источниках некоторые уровни опускаются или совмещаются друг с другом. Ниже представлены основные уровни организации живой природы обособленно друг от друга.

  • Молекулярный — уровень взаимодействия молекул, составляющих клетки и обуславливающих все её процессы.
  • Клеточный — уровень, на котором рассматриваются клетки как элементарные единицы строения живого.
  • Тканевой — уровень совокупностей сходных по строению и функциям клеток, образующих ткани.
  • Органный — уровень отдельных органов, обладающих собственным строением (объединением типов тканей) и местоположением в организме.
  • Организменный — уровень отдельного организма.
  • Популяционно-видовой уровень — уровень популяции, составляемой совокупностью особей одного вида.
  • Биогеоценотический — уровень взаимодействия видов между собой и с различными факторами окружающей среды.
  • Биосферный уровень — совокупность всех биогеоценозов, включающих и обуславливающих все явления жизни на Земле.

Большинство биологических наук является дисциплинами с более узкой специализацией. Традиционно они группируются по типам исследуемых организмов:

Области внутри биологии далее делятся либо по масштабам исследования, либо по применяемым методам:

  • биохимия изучает химические основы жизни,
  • биофизика изучает физические основы жизни,
  • молекулярная биология — сложные взаимодействия между биологическими молекулами,
  • клеточная биология и цитология — основные строительные блоки многоклеточных организмов, клетки,
  • гистология и анатомия — строение тканей и организма из отдельных органов и тканей,
  • физиология — физические и химические функции органов и тканей,
  • этология — поведение живых существ,
  • экология — взаимозависимость различных организмов и их среды,
  • генетика — закономерности наследственности и изменчивости,
  • биология развития — развитие организма в онтогенезе,
  • палеобиология и эволюционная биология — зарождение и историческое развитие живой природы.

На границах со смежными науками возникают: биомедицина, биофизика (изучение живых объектов физическими методами), биометрия и т. д. В связи с практическими потребностями человека возникают такие направления, как космическая биология, социобиология, физиология труда, бионика.

Биологические науки используют методы наблюдения, описания, сравнения, исторического сравнения, экспериментов (опыта) и моделирования (в том числе компьютерного).

Биологические дисциплины[править | править код]

Акарология — Анатомия — Альгология — Антропология — Арахнология — Бактериология — Биогеография — Биогеоценология — Биотехнология — Биоинформатика — Биология океана — Биология развития — Биометрия — Бионика — Биосемиотика — Биоспелеология — Биофизика — Биохимия — Ботаника — Биомеханика — Биоценология — Биоэнергетика — Бриология — Вирусология — Генетика — Геоботаника — Герпетология — Гидробиология — Гистология — Дендрология — Зоология — Зоопсихология — Иммунология — Ихтиология — Колеоптерология — Космическая биология — Ксенобиология — Лепидоптерология — Лихенология — Малакология — Микология — Микробиология — Мирмекология — Молекулярная биология — Морфология — Нейробиология — Орнитология — Палеонтология — Палинология — Паразитология — Радиобиология — Систематика — Системная биология — Синтетическая биология — Спонгиология — Таксономия — Теоретическая биология — Териология — Токсикология — Фенология — Физиология — Физиология ВНД — Физиология животных и человека — Физиология растений — Фитопатология — Цитология — Эволюционная биология — Экология — Эмбриология — Эндокринология — Энтомология — Этология.

Хотя концепция биологии как особой естественной науки возникла в XIX веке, биологические дисциплины зародились ранее в медицине и естественной истории. Обычно их традицию ведут от таких античных учёных, как Аристотель и Гален через арабских медиков аль-Джахиза[9], ибн-Сину[10], ибн-Зухра[11] и ибн-аль-Нафиза[12]. В эпоху Возрождения биологическая мысль в Европе была революционизирована благодаря изобретению книгопечатания и распространению печатных трудов, интересу к экспериментальным исследованиям и открытию множества новых видов животных и растений в эпоху Великих географических открытий. В это время работали выдающиеся умы Андрей Везалий и Уильям Гарвей, которые заложили основы современной анатомии и физиологии. Несколько позже Линней и Бюффон совершили огромную работу по классификации форм живых и ископаемых существ. Микроскопия открыла для наблюдения ранее неведомый мир микроорганизмов, заложив основу для развития клеточной теории. Развитие естествознания, отчасти благодаря появлению механистической философии, способствовало развитию естественной истории[13][14].

К началу XIX века некоторые современные биологические дисциплины, такие как ботаника и зоология, достигли профессионального уровня. Лавуазье и другие химики и физики начали сближение представлений о живой и неживой природе. Натуралисты, такие как Александр Гумбольдт, исследовали взаимодействие организмов с окружающей средой и его зависимость от географии, закладывая основы биогеографии, экологии и этологии. В XIX веке развитие учения об эволюции постепенно привело к пониманию роли вымирания и изменчивости видов, а клеточная теория показала в новом свете основы строения живого вещества. В сочетании с данными эмбриологии и палеонтологии эти достижения позволили Чарльзу Дарвину создать целостную теорию эволюции, в основе которой лежит естественный отбор. К концу XIX века идеи самозарождения окончательно уступили место теории инфекционного агента как возбудителя заболеваний. Но механизм наследования родительских признаков всё ещё оставался тайной[13][15][16].

В начале XX века Томас Морган и его ученики заново открыли законы, исследованные ещё в середине XIX века Грегором Менделем, после чего начала быстро развиваться генетика. К 1930-м годам сочетание популяционной генетики и теории естественного отбора породило современную эволюционную теорию или неодарвинизм. Благодаря развитию биохимии были открыты ферменты и началась грандиозная работа по описанию всех процессов метаболизма. Раскрытие структуры ДНК Уотсоном и Криком дало мощный толчок для развития молекулярной биологии. За ним последовало постулирование центральной догмы, расшифровка генетического кода, а к концу XX века — и полная расшифровка генетического кода человека и ещё нескольких организмов, наиболее важных для медицины и сельского хозяйства. Благодаря этому появились новые дисциплины геномика и протеомика. Хотя увеличение количества дисциплин и чрезвычайная сложность предмета биологии породили и продолжают порождать среди биологов всё более узкую специализацию, биология продолжает оставаться единой наукой, и данные каждой из биологических дисциплин, в особенности геномики, применимы во всех остальных[17][18][19][20].

  1. ↑ Биология // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  2. ↑ Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  3. ↑ Treviranus, Gottfried Reinhold, Biologie : oder Philosophie der lebenden Natur für Naturforscher und Aerzte, 1802
  4. King, TJ & Roberts, MBV. Biology: A Functional Approach. — Thomas Nelson and Sons, 1986. — ISBN 978-0174480358.
  5. Avila, Vernon L. Biology: investigating life on earth. — Boston : Jones and Bartlett, 1995. — P. 11—18. — ISBN 0-86720-942-9.
  6. Campbell, Neil A. Biology: Exploring Life. — Boston, Massachusetts : Pearson Prentice Hall, 2006.
  7. Mazzarello, P. A unifying concept: the history of cell theory (англ.) // Nature Cell Biology : journal. — 1999. — Vol. 1. — P. E13—E15. — doi:10.1038/8964.
  8. ↑ Darwin, Charles (1859). On the Origin of Species, 1st, John Murray
  9. ↑ Conway Zirkle (1941), Natural Selection before the «Origin of Species», Proceedings of the American Philosophical Society 84 (1): 71-123.
  10. ↑ D. Craig Brater and Walter J. Daly (2000), «Clinical pharmacology in the Middle Ages: Principles that presage the 21st century», Clinical Pharmacology & Therapeutics 67 (5), p. 447—450 [449].
  11. ↑ Islamic medicine, Hutchinson Encyclopedia[en].
  12. ↑ S. A. Al-Dabbagh (1978). «Ibn Al-Nafis and the pulmonary circulation», The Lancet 1, p. 1148.
  13. 1 2 Mayr, E. The Growth of Biological Thought. — Belknap Press, 1985. — ISBN 978-0674364462.
  14. Magner, LN. A History of the Life Sciences. — TF-CRC, 2002. — ISBN 978-0824708245.
  15. Futuyma, DJ. Evolution. — Sinauer Associates, 2005. — ISBN 978-0878931873.
  16. Coleman, W. Biology in the Nineteenth Century: Problems of Form, Function and Transformation. — Cambridge University Press, 1978. — ISBN 978-0521292931.
  17. Allen, GE. Life Science in the Twentieth Century. — Cambridge University Press, 1978. — ISBN 978-0521292962.
  18. Fruton, JS. Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. — Yale University Press, 1999. — ISBN 978-0300076080.
  19. Morange, M & Cobb, M. A History of Molecular Biology. — Harvard University Press, 2000. — ISBN 978-0674001695.
  20. Smocovitis, VB. Unifying Biology. — Princeton University Press, 1996. — ISBN 978-0691033433.

ru.wikipedia.org

Что такое функция - материалы для подготовки к ЕГЭ по Математике

 

Понятие функции – одно из основных в математике.

На уроках математики вы часто слышите это слово. Вы строите графики функций, занимаетесь исследованием функции, находите наибольшее или наименьшее значение функции. Но для понимания всех этих действий давайте определим, что такое функция.

Определение функции можно дать несколькими способами. Все они будут дополнять друг друга.

1. Функция – это зависимость одной переменной величины от другой. Другими словами, взаимосвязь между величинами.

Любой физический закон, любая формула отражает такую взаимосвязь величин. Например, формула – это зависимость давления жидкости от глубины .

Чем больше глубина, тем больше давление жидкости. Можно сказать, что давление жидкости является функцией от глубины, на которой его измеряют.

Знакомое вам обозначение как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины по определенному закону, или правилу, обозначаемому .

Другими словами: меняем (независимую переменную, или аргумент) – и по определенному правилу меняется .

Совсем необязательно обозначать переменные и . Например, – зависимость длины от температуры , то есть закон теплового расширения. Сама запись означает, что величина зависит от .

2. Можно дать и другое определение.

Функция – это определенное действие над переменной.

Это означает, что мы берем величину , делаем с ней определенное действие (например, возводим в квадрат или вычисляем ее логарифм) – и получаем величину .

В технической литературе встречается определение функции как устройства, на вход которого подается – а на выходе получается .

Итак, функция – это действие над переменной. В этом значении слово «функция» применяется и в областях, далеких от математики. Например, можно говорить о функциях мобильного телефона, о функциях головного мозга или функциях депутата. Во всех этих случаях речь идет именно о совершаемых действиях.

3. Дадим еще одно определение функции – то, что чаще всего встречается в учебниках.

Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Например, функция каждому действительному числу ставит в соответствие число в два раза большее, чем .

 

Повторим еще раз: каждому элементу множества по определенному правилу мы ставим в соответствие элемент множества . Множество называется областью определения функции. Множество – областью значений.

Но зачем здесь такое длинное уточнение: «каждому элементу первого множества соответствует один и только один элемент второго»? Оказывается, что соответствия между множествами тоже бывают разные.

Рассмотрим в качестве примера соответствие между двумя множествами – гражданами России, у которых есть паспорта, и номерами их паспортов. Ясно, что это соответствие взаимно-однозначное – у каждого гражданина только один российский паспорт. И наоборот – по номеру паспорта можно найти человека.

В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция . Каждому значению соответствует одно и только одно значение . И наоборот – зная , можно однозначно найти .

Могут быть и другие типы соответствий между множествами. Возьмем для примера компанию друзей и месяцы, в которые они родились:

Каждый человек родился в какой-то определенный месяц. Но данное соответствие не является взаимно-однозначным. Например, в июне родились Сергей и Олег.

Пример такого соответствия в математике – функция . Один и тот же элемент второго множества соответствует двум разным элементам первого множества: и .

А каким должно быть соответствие между двумя множествами, чтобы оно не являлось функцией? Очень просто! Возьмем ту же компанию друзей и их хобби:

Мы видим, что в первом множестве есть элементы, которым соответствует два или три элемента из второго множества.

Очень сложно было бы описать такое соответствие математически, не правда ли?

Вот другой пример. На рисунках изображены кривые. Как вы думаете, какая из них является графиком функции, а какая – нет?

Ответ очевиден. Первая кривая – это график некоторой функции, а вторая – нет. Ведь на ней есть точки, где каждому значению соответствует не одно, а целых три значения .

Ты нашел то, что искал? Поделись с друзьями!

Перечислим способы задания функции.

1. С помощью формулы. Это удобный и привычный для нас способ. Например:

,

,

,

.

Это примеры функций, заданных формулами.

2. Графический способ. Он является самым наглядным. На графике сразу видно все – возрастание и убывание функции, наибольшие и наименьшие значения, точки максимума и минимума. В следующей статье будет рассказано об исследовании функции с помощью графика.

К тому же не всегда легко вывести точную формулу функции. Например, курс доллара (то есть зависимость стоимости доллара от времени) можно показать только на графике.

3. С помощью таблицы. С этого способа вы когда-то начинали изучение темы «Функция» - строили таблицу и только после этого – график. А при экспериментальном исследовании какой-либо новой закономерности, когда еще неизвестны ни формула, ни график, этот способ будет единственно возможным.

4. С помощью описания. Бывает, что на разных участках функция задается разными формулами. Известная вам функция задается описанием:

Читайте также: Чтение графика функции

ege-study.ru

Л.Н. Воронов. ВВЕДЕНИЕ В ТЕОРЕТИЧЕСКУЮ БИОЛОГИЮ.

Глава 5. ВЗАИМОСВЯЗЬ ФОРМЫ И ФУНКЦИИ В БИОЛОГИИ.

Точное логическое определение понятий -
главнейшее условие истинного знания.

Сократ

      Кроме исторического подхода в морфологии на гегемонию претендуют редукционистская концепция в целом и функциональный и адаптивный подходы в частности. В России редукционизм в виде синтетической теории эволюции до сих пор является чуть ли не государственной концепцией, так как нет ни одного учебника с равноправным изложением дарвинизма, номогенеза, сальтационизма, нейтрализма и т.д. Преподаётся только дарвинизм и его современная интерпретация, а остальные концепции читаются в разделах "Дарвинизм и антидарвинизм". Между тем на западе известны работы Левонтина (Lewontin, 1985), который считает, что организм является как объектом, так и субъектом эволюции и развивается на основе своих собственных ограничений и структуралистической морфогенетики Гудвина (Goodwin, 1994) рассматривающей динамические процессы, конструирующие разнообразие органических форм и т.д. Теория Дарвина и его последователей, несмотря на огромные заслуги, провозглашает два тезиса, тормозящие развитие теоретической биологии: 1) связь между формой и функцией неразрывна и жёстко связана с изменениями внешней среды; 2) преадаптации носят исключительно приспособительный характер.

      Рассмотрим проблему взаимодействия формы и функции в морфологии. Под функцией одни учёные понимают целесообразную реакцию живого организма, имеющую приспособительное значение при взаимодействии организма со средой (Матвеев, 1957). Сторонники этой точки зрения утверждают неразрывную связь между формой и функцией, являющуюся выражением непрерывного взаимодействия между организмом и средой (Шмальгаузен, 1938). Согласно другой точке зрения, в самом общем смысле функция гораздо консервативнее структуры - одна и та же цель достигается различными способами. В обобщенном виде эти взгляды изложены американским математиком Рашевским как принцип биологического эпиморфизма, которой состоит в том, что одной функции соответствует более чем одна форма и наоборот. В методологическом плане этот принцип очень важен, так как у многих учёных существует соблазн слишком однозначно и прямолинейно трактовать связь формы и функции, особенно в нейроморфологии. Из-за этого порой возникают поверхностные и скоропалительные объяснения в духе работ М.Ф. Никитенко (1969 ) и др. Видимо, в отношениях между формой и функцией на соответствующих структурных уровнях, по-видимому, всегда существует определённое несовпадение, "люфт", за счет которого, в частности, и реализуются компенсаторные возможности организма (Кокшайский, 1980). Этот "люфт" между формой и функцией в различных системах живых организмов нуждается в измерении, так как от этого зависят морфо-функциональные и морфо-экологические сравнения. Из за того, что в настоящее время проведение подобных измерений проблематично, следует выстроить хотя бы иерархию достоверности морфо-функциональных сравнений. В самом общем виде можно сказать, что чем больше функций выполняет орган, тем сложнее устанавливать однозначные морфо-функциональные и морфо-экологические сравнения. Скорее всего, наименьший "люфт" между формой и функцией будет в локомоторной системе организмов, так как пространственные, геометрические особенности костно-мускульных аппаратов (их конструкция) прямо определяют функциональные особенности: любой механизм может функционировать лишь в строгом соответствии с его физическими свойствами. Эти свойства удаётся выводить из морфологии при помощи несложного логического аппарата и на этой основе предсказывать адаптивные возможности организма, обеспечиваемые изученным узлом (Дзержинский, 1982). Наибольший "люфт", вероятно, следует ожидать в нервной системе. В связи с этим Ю.Б. Мантейфель (1982) считает, что на современном этапе развития нейрологии задачи многих исследований ограничены установлением морфо-физиолгических корреляций, то есть выявлением связи между степенью выраженности признаков без установления причинно-следственных связей. Между этими системами органов должны располагаться пищеварительная, кровеносная, выделительная и другие системы.

      По мнению Ю.В. Чайковского (2006), форма и функция не сводятся друг к другу, хоть и зависят друг от друга, поскольку являются двумя сторонами одной реальности - целостности всякой системы. Иногда эта целостность очевидна (клетка, организм, экосистема), но иногда загадочна: что побуждает виды самых разных таксонов вести себя согласованно? Листорасполажения разных видов выстраиваются в ряд Фибоначчи, термиты приспособлены для почти полного их поедания, класс птиц согласованно охотится за классом насекомых и т.д.

      Для восприятия идеалистического взгляда на проблемы эволюции важно уяснить, что форма организмов может быть не зависима от материи. Тогда точное сходство морозных узоров на окнах с 20 видами растений не будет казаться выдумками природы, а откроет дверь к постижению мира идей Платона!

2008

Л.Н. Воронов. "ВВЕДЕНИЕ В ТЕОРЕТИЧЕСКУЮ БИОЛОГИЮ". Учебное пособие. Чебоксары, Чуваш. гос. пед. ун-т, 2008. 70 с.

Оглавление:

ВВЕДЕНИЕ ...3

ПЕРВЫЙ УРОВЕНЬ ПОСТИЖЕНИЯ ПРОБЛЕМ ТЕОРЕТИЧЕСКОЙ БИОЛОГИИ ...8

В КАКОМ НАПРАВЛЕНИИ МОЖЕТ РАЗВИВАТЬСЯ СОВРЕМЕННАЯ ЭВОЛЮЦИОННАЯ МЫСЛЬ? ...15

ВТОРОЙ УРОВЕНЬ ПОСТИЖЕНИЯ ПРОБЛЕМ ТЕОРЕТИЧЕСКОЙ БИОЛОГИИ ...22

Глава 1. О ПРЕДМЕТЕ ТЕОРЕТИЧЕСКОЙ БИОЛОГИИ ...22

Глава 2. ФИЛОСОФИЯ И БИОЛОГИЯ НА СОВРЕМЕННОМ ЭТАПЕ РАЗВИТИЯ НАУК ...25

Глава 3. НАУКА И РЕЛИГИЯ ...29

Глава 4. ПРОБЛЕМЫ ЭВОЛЮЦИИ И ЕСТЕСТВЕННОЙ СИСТЕМЫ ОРГАНИЗМОВ ...34

КТО, КРОМЕ Ч. ДАРВИНА, РАЗРАБАТЫВАЛ ЭВОЛЮЦИОННЫЕ КОНЦЕПЦИИ ...39

Глава 5. ВЗАИМОСВЯЗЬ ФОРМЫ И ФУНКЦИИ В БИОЛОГИИ ...49

Глава 6. РОЛЬ ПОВЕДЕНИЯ В ЭВОЛЮЦИИ ОРГАНИЗМОВ ...52

Глава 7. ФЕНОМЕН ЧЕЛОВЕКА В БИОЛОГИИ..56

Глава 8. ПУТИ РАЗВИТИЯ ЭВОЛЮЦИИ ...59

ЛИТЕРАТУРА ...64

www.lasius.narod.ru

1.1. Биология как наука. Роль биологии.

Раздел 1

Биология – наука о жизни

 

1.1. Биология как наука. Роль биологии.

Биология  – наука, изучающая свойства живых систем. Однако определить, что такое живая система, достаточно сложно. Именно поэтому ученые установили несколько критериев, по которым организм можно отнести к живым. Главными из этих критериев являются обмен веществ или метаболизм, самовоспроизведение и саморегуляция.

Понятие наука определяется, как «сфера человеческой деятельности по получению, систематизации объективных знаний о действительности». В соответствии с этим определением объектом науки – биологии является жизнь   во всех ее проявлениях и формах, а также на разных уровнях.

Каждая наука, в том числе и биология, пользуется определенными методами  исследования. Некоторые из них универсальны для всех наук, например такие, как наблюдение, выдвижение и проверка гипотез, построение теорий. Другие научные методы могут быть использованы только определенной наукой: генеалогический, гибридизация, метод культуры тканей и т.д.

Биология тесно связана с другими науками – химией, физикой, экологией, географией. Собственно биология делится на множество частных наук, изучающих различные биологические объекты: биология растений и животных, физиология растений, морфология, генетика, систематика, селекция, микология, гельминтология и множество других наук.

Метод  – это путь исследования, который проходит ученый, решая какую-либо научную задачу, проблему.

Методы науки:

1.Универсальные:

Моделирование – метод, при котором создается некий образ объекта, модель, с помощью которой ученые получают необходимые сведения об объекте (Джеймс Уотсон и Френсис Крик создали из пластмассовых элементов модель – двойную спираль ДНК, отвечающую данным рентгенологических и биохимических исследований. Эта модель вполне удовлетворяла требованиям, предъявляемым к ДНК).

Наблюдение  – метод, с помощью которого исследователь собирает информацию об объекте (можно визуально наблюдать за поведением животных,  с помощью приборов за изменениями в живых объектах, за сезонными изменениями в природе). Выводы, сделанные наблюдателем, проверяются либо повторными наблюдениями, либо экспериментально.

Эксперимент (опыт)  – метод, с помощью которого проверяют результаты наблюдений, выдвинутые предположения – гипотезы (получение новых знаний с помощью поставленного опыта). Примеры экспериментов: скрещивания животных или растений с целью получения нового сорта или породы, проверка нового лекарства.

Проблема  – вопрос, задача, требующие решения. Решение проблемы ведет к получению нового знания. Научная проблема всегда скрывает какое-то противоречие между известным и неизвестным. Решение проблемы требует от ученого сбора фактов, их анализа, систематизации.

Сформулировать проблему бывает достаточно сложно, однако всегда, когда есть затруднение, противоречие, появляется проблема.

Гипотеза  – предположение, предварительное решение поставленной проблемы. Выдвигая гипотезы, исследователь ищет взаимосвязи между фактами, явлениями, процессами. Именно поэтому гипотеза чаще всего имеет форму предположения: «если … тогда». Гипотеза проверяется экспериментально.

Теория  – это обобщение основных идей в какой-либо научной области знания. Со временем теории дополняются новыми данными, развиваются. Некоторые теории могут опровергаться новыми фактами. Верные научные теории подтверждаются практикой.

2.Частные научные методы:

Генеалогический  – применяется при составлении родословных людей, выявлении характера наследования некоторых признаков.

Исторический – установление взаимосвязей между фактами, процессами, явлениями, происходившими на протяжении исторически длительного времени (несколько миллиардов лет).

Палеонтологический – метод, позволяющий выяснить родство между древними организмами, останки которых находятся в земной коре, в разных геологических слоях.

Центрифугирование – разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки, легких и тяжелых фракций (составляющих) органических веществ и т.д.

Цитологический или цитогенетический – исследование строения клетки, ее структур с помощью различных микроскопов.

Биохимический – исследование химических процессов, происходящих в организме.

Каждая частная биологическая наука (ботаника, зоология, анатомия и физиология, цитология, эмбриология, генетика, селекция, экология и другие) пользуется своими более частными методами исследования.

У каждой науки есть объект и предмет исследования.

У биологии объектом исследования является ЖИЗНЬ. Предмет изучения науки всегда несколько уже, ограниченнее, чем объект. Так, например, кого-то из ученых интересует обмен веществ  организмов. Тогда объектом изучения будет жизнь, а предметом изучения – обмен веществ. С другой стороны, обмен веществ тоже может быть объектом исследования, но тогда предметом исследования будет одна из его характеристик, например обмен белков, или жиров, или углеводов.

ТЕМАТИЧЕСКИЕ  ЗАДАНИЯ  

Часть А

А1. Биология как наука изучает
1) общие признаки строения растений и животных
2) взаимосвязь живой и неживой природы
3) процессы, происходящие в живых системах
4) происхождение жизни на Земле

А2. И.П. Павлов в своих работах по пищеварению применял метод исследования:
1) исторический
2) описательный
3) экспериментальный
4) биохимический

А3. Предположение Ч. Дарвина о том, что у каждого современного вида или группы видов были общие предки – это:
1) теория
2) гипотеза
3) факт
4) доказательство

А4. Эмбриология изучает
1) развитие организма от зиготы до рождения
2) строение и функции яйцеклетки
3) послеродовое развитие человека
4) развитие организма от рождения до смерти

А5. Количество и форма хромосом в клетке устанавливается методом исследования
1) биохимическим            
2) цитологическим
3) центрифугированием  
4) сравнительным

А6. Селекция как наука решает задачи
1) создания новых сортов растений и пород животных 
2) сохранения биосферы
3) создания агроценозов                                                   
4) создания новых удобрений

А7. Закономерности наследования признаков у человека устанавливаются методом
1) экспериментальным    
2) гибридологическим
3) генеалогическим         
4) наблюдения

А8. Специальность ученого, изучающего тонкие структуры хромосом, называется:
1) селекционер
2) цитогенетик
3) морфолог
4) эмбриолог

А9. Систематика – это наука, занимающаяся
1) изучением внешнего строения организмов
2) изучением функций организма
3) выявлением связей между организмами            
4) классификацией организмов

Часть В

В1. Укажите три функции, которые выполняет современная клеточная теория
1) Экспериментально подтверждает научные данные о строении организмов
2) Прогнозирует появление новых фактов, явлений
3) Описывает клеточное строение разных организмов
4) Систематизирует, анализирует и объясняет новые факты о клеточном строении организмов
5) Выдвигает гипотезы о клеточном строении всех организмов
6) Создает новые методы исследования клетки

Часть  С

С1. Французский ученый Луи Пастер прославился как «спаситель человечества», благодаря созданию вакцин против инфекционных заболеваний, в том числе таких как, бешенство, сибирская язва и др. Предложите гипотезы, которые он мог выдвинуть. Каким из методов исследования он доказывал свою правоту?

 

biology100.ru

Функции живого вещества — урок. Биология, Общие биологические закономерности (9–11 класс).

Живое вещество играет огромную роль в развитии нашей планеты.

К такому выводу пришёл русский учёный В. И. Вернадский, исследовав состав и эволюцию земной коры. Он доказал, что полученные данные не могут быть объяснены лишь геологическими причинами, без учёта роли живого вещества в геохимической миграции атомов.

 

Начиная с момента зарождения, жизнь постоянно развивается и усложняется, оказывая воздействие на окружающую среду, изменяя её. Таким образом, эволюция биосферы протекает параллельно с историческим развитием органической жизни.


Время жизни на Земле измеряется примерно \(6\)–\(7\) миллиардами лет. Возможно, что примитивные формы жизни появились ещё раньше. Но первые следы своего пребывания они оставили \(2,5\)–\(3\) млрд лет назад. С этого времени произошли коренные изменения поверхности планеты и сформировалось до \(5\) млн видов животных, растений и микроорганизмов. На Земле возникло живое вещество, заметно отличающееся от неживой материи.

 

Развитие жизни привело к появлению новой общепланетной структурной оболочки биосферы, тесно взаимосвязанной единой системы геологических и биологических тел и процессов преобразования энергии и вещества.

Биосфера — не только сфера распространения жизни, но и результат её деятельности.

Особое место среди живых организмов заняли растения, потому что они обладают способностью к фотосинтезу. Они продуцируют практически всё органическое вещество на планете (растений насчитывается почти \(300\) тыс. видов).

Функции живого вещества

В. И. Вернадский дал представление об основных биогеохимических функциях живого вещества.

1. Энергетическая функция связана с запасанием энергии в процессе фотосинтеза, передачей её по цепям питания, рассеиванием.

Эта функция — одна из важнейших. В её основе лежит процесс фотосинтеза, в результате которого происходит аккумуляция солнечной энергии и её последующее перераспределение между компонентами биосферы.

 

Биосферу можно сравнить с огромной машиной, работа которой зависит от одного решающего фактора — энергии: не будь её, всё немедленно остановилось бы.
В биосфере роль основного источника энергии играет солнечное излучение.

Биосфера аккумулирует энергию, приходящую из Космоса на нашу планету.

Живые организмы не просто зависят от лучистой энергии Солнца, они выступают как гигантский аккумулятор (накопитель) и уникальный трансформатор (преобразователь) этой энергии.


Это происходит следующим образом. Растения-автотрофы (и микроорганизмы-хемотрофы) создают органическое вещество. Все остальные организмы планеты — гетеротрофы. Они используют созданное органическое вещество в пищу, что приводит к возникновению сложных последовательностей синтеза и распада органических веществ. Это-то и является основой биологического круговорота химических элементов в биосфере.

Стало быть, живые организмы есть важнейшая биохимическая сила, преобразующая земную кору.

 

Миграция и разделение химических элементов на земной поверхности, в почве, в осадочных породах, атмосфере и гидросфере осуществляются при непосредственном участии живого вещества. Поэтому в геологическом разрезе живое вещество, атмосфера, гидросфера и литосфера — это взаимосвязанные части единой, непрерывно развивающейся планетарной оболочки — биосферы.

2. Газовая функция — способность изменять и поддерживать определённый газовый состав среды обитания и атмосферы в целом.

Преобладающая масса газов на планете имеет биогенное происхождение.

Пример:

кислород атмосферы накоплен за счёт фотосинтеза.

3. Концентрационная функция — способность организмов концентрировать в своём теле рассеянные химические элементы, повышая их содержание по сравнению с окружающей организмы средой на несколько порядков.

Организмы накапливают в своих телах многие химические элементы.

Пример:

среди них на первом месте стоит углерод. Содержание углерода в углях по степени концентрации в тысячи раз больше, чем в среднем для земной коры. Нефть — концентратор углерода и водорода, так как имеет биогенное происхождение. Среди металлов по концентрации первое место занимает кальций. Целые горные хребты сложены из остатков животных с известковым скелетом. Концентраторами кремния являются диатомовые водоросли, радиолярии и некоторые губки, йода — водоросли ламинарии, железа и марганца — особые бактерии. Позвоночными животными накапливается фосфор, сосредотачиваясь в их костях.

Результат концентрационной деятельности — залежи горючих ископаемых, известняки, рудные месторождения и т. п.

4. Окислительно-восстановительная функция связана с интенсификацией под влиянием живого вещества процессов как окисления благодаря обогащению среды кислородом, так и восстановления прежде всего в тех случаях, когда идёт разложение органических веществ при дефиците кислорода.

Пример:

восстановительные процессы обычно сопровождаются образованием и накоплением сероводорода, а также метана. Это, в частности, делает практически безжизненными глубинные слои болот, а также значительные придонные толщи воды (например, в Чёрном море).

Подземные горючие газы являются продуктами разложения органических веществ растительного происхождения, захороненных ранее в осадочных толщах.

5. Деструктивная функция — разрушение организмами и продуктами их жизнедеятельности как самих остатков органического вещества, так и косных веществ.

Основной механизм этой функции связан с круговоротом веществ. Наиболее существенную роль в этом отношении выполняют низшие формы жизни — грибы, бактерии (деструкторы, редуценты).

6. Транспортная функция — перенос вещества и энергии в результате активной формы движения организмов.

Часто такой перенос осуществляется на колоссальные расстояния, например, при миграциях и кочёвках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например в местах их скопления (птичьи базары и другие колониальные поселения).

7. Средообразующая функция является в значительной мере интегративной (результат совместного действия других функций).

С ней в конечном счёте связано преобразование физико-химических параметров среды. Подробнее о ней см. в разделе «Средообразующая роль живых организмов».

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

http://ecodelo.org

http://lib4all.ru/base/B3337/B3337Content.php

www.yaklass.ru

Биология - это... Что такое Биология?

Биоло́гия (греч. βιολογία — βίο, био, жизнь; др.-греч. λόγος — учение, наука) — система наук, объектами изучения которой являются живые существа и их взаимодействие с окружающей средой. Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.

Как особая наука биология выделилась из естественных наук в XIX веке, когда учёные обнаружили, что живые организмы обладают некоторыми общими для всех характеристиками. Термин «биология» был введён независимо несколькими авторами: Фридрихом Бурдахом в 1800 году, в 1802 году Готфридом Рейнхольдом Тревиранусом[1] и Жаном Батистом Ламарком.

В основе современной биологии лежат пять фундаментальных принципов: клеточная теория, эволюция, генетика, гомеостаз и энергия[2][3]. В наше время биология — стандартный предмет в средних и высших учебных заведениях всего мира. Ежегодно публикуется более миллиона статей и книг по биологии, медицине и биомедицине[4].

В биологии выделяют следующие уровни организации:

  • Клеточный, субклеточный и молекулярный уровень: клетки содержат внутриклеточные структуры, которые строятся из молекул.
  • Организменный и органно-тканевой уровень: у многоклеточных организмов клетки составляют ткани и органы. Органы же, в свою очередь, взаимодействуют в рамках целого организма.
  • Популяционный уровень: особи одного и того же вида, обитающие на части ареала, образуют популяцию.
  • Видовой уровень: свободно скрещивающиеся друг с другом особи обладающие морфологическим, физиологическим, биохимическим сходством и занимающие определённый ареал (район распространения) формируют биологический вид.
  • Биогеоценотический и биосферный уровень: на однородном участке земной поверхности складываются биогеоценозы, которые, в свою очередь, образуют биосферу.

Большинство биологических наук является дисциплинами с более узкой специализацией. Традиционно они группируются по типам исследуемых организмов: ботаника изучает растения, зоология — животных, микробиология — одноклеточные микроорганизмы. Области внутри биологии далее делятся либо по масштабам исследования, либо по применяемым методам: биохимия изучает химические основы жизни, молекулярная биология — сложные взаимодействия между биологическими молекулами, клеточная биология и цитология — основные строительные блоки многоклеточных организмов, клетки, гистология и анатомия — строение тканей и организма из отдельных органов и тканей, физиология — физические и химические функции органов и тканей, этология — поведение живых существ, экология — взаимозависимость различных организмов и их среды.

Передачу наследственной информации изучает генетика. Развитие организма в онтогенезе изучается биологией развития. Зарождение и историческое развитие живой природы — палеобиология и эволюционная биология.

На границах со смежными науками возникают: биомедицина, биофизика (изучение живых объектов физическими методами), биометрия и т. д. В связи с практическими потребностями человека возникают такие направления, как космическая биология, социобиология, физиология труда, бионика.

Биологи

Биологические общества

Биологические организации

Традиционно научными исследованиями в области биологии занимаются университеты, хотя не всегда соответствующие факультеты называются биологическими. Например, в Московском государственном университете им. М. В. Ломоносова кроме биологического факультета имеются также факультет биоинженерии и биоинформатики, факультет фундаментальной медицины и НИИ физико-химической биологии. Кроме университетов научные исследования проводят государственные и частные институты, которые в России преимущественно относятся к системе Российской академии наук (см. список институтов), Российской академии сельскохозяйственных наук или Российской академии медицинских наук.

Биологи

Биологический метод

Биологические науки используют методы наблюдения, моделирования (в т.ч. компьютерного), описания, сравнения, экспериментов (опыта) и исторического сравнения.

История биологии

Хотя концепция биологии как особой естественной науки возникла в XIX веке, биологические дисциплины зародились ранее в медицине и естественной истории. Обычно их традицию ведут от таких античных учёных как Аристотель и Гален через арабских медиков аль-Джахиза[5], ибн-Сину[6], ибн-Зухра[7] и ибн-аль-Нафиза[8]. В эпоху Возрождения биологическая мысль в Европе была революционизирована благодаря изобретению книгопечатания и распространению печатных трудов, интересу к экспериментальным исследованиям и открытию множества новых видов животных и растений в эпоху Великих географических открытий. В это время работали выдающиеся умы Андрей Везалий и Уильям Гарвей, которые заложили основы современной анатомии и физиологии. Несколько позже Линней и Бюффон совершили огромную работу по классификации форм живых и ископаемых существ. Микроскопия открыла для наблюдения ранее неведомый мир микроорганизмов, заложив основу для развития клеточной теории. Развитие естествознания, отчасти благодаря появлению механистической философии, способствовало развитию естественной истории[9][10].

К началу XIX века некоторые современные биологические дисциплины, такие как ботаника и зоология, достигли профессионального уровня. Лавуазье и другие химики и физики начали сближение представлений о живой и неживой природе. Натуралисты, такие как Александр Гумбольдт, исследовали взаимодействие организмов с окружающей средой и его зависимость от географии, закладывая основы биогеографии, экологии и этологии. В XIX веке развитие учения об эволюции постепенно привело к пониманию роли вымирания и изменчивости видов, а клеточная теория показала в новом свете основы строения живого вещества. В сочетании с данными эмбриологии и палеонтологии эти достижения позволили Чарльзу Дарвину создать целостную теорию эволюции путём естественного отбора. К концу XIX века идеи самозарождения окончательно уступили место теории инфекционного агента как возбудителя заболеваний. Но механизм наследования родительских признаков всё ещё оставался тайной[9][11][12].

В начале XX века Томас Морган и его ученики заново открыли законы, исследованные ещё в середине XIX века Грегором Менделем, после чего начала быстро развиваться генетика. К 1930-м годам сочетание популяционной генетики и теории естественного отбора породило современную эволюционную теорию или неодарвинизм. Благодаря развитию биохимии были открыты ферменты и началась грандиозная работа по описанию всех процессов метаболизма. Раскрытие структуры ДНК Уотсоном и Криком дало мощный толчок для развития молекулярной биологии. За ним последовало постулирование центральной догмы, расшифровка генетического кода, а к концу XX века — и полная расшифровка генетического кода человека и ещё нескольких организмов, наиболее важных для медицины и сельского хозяйства. Благодаря этому появились новые дисциплины геномика и протеомика. Хотя увеличение количества дисциплин и чрезвычайная сложность предмета биологии породили и продолжают порождать среди биологов всё более узкую специализацию, биология продолжает оставаться единой наукой, и данные каждой из биологических дисциплин, в особенности геномики, применимы во всех остальных[13][14][15][16].

Биологическая картина мира

Существует пять принципов, объединяющих все биологические дисциплины в единую науку о живой материи[2]:

  • Клеточная теория. Клеточная теория — учение обо всём, что касается клеток. Все живые организмы состоят, как минимум, из одной клетки, основной функциональной единицы каждого организма. Базовые механизмы и химия всех клеток во всех земных организмах сходны; клетки происходят только от ранее существовавших клеток, которые размножаются путём клеточного деления. Клеточная теория описывает строение клеток, их деление, взаимодействие с внешней средой, состав внутренней среды и клеточной оболочки, механизм действия отдельных частей клетки и их взаимодействия между собой.
  • Эволюция. Через естественный отбор и генетический дрейф наследственные признаки популяции изменяются из поколения в поколение.
  • Теория гена. Признаки живых организмов передаются из поколения в поколение вместе с генами, которые закодированы в ДНК. Информация о строении живых существ или генотип используется клетками для создания фенотипа, наблюдаемых физических или биохимических характеристик организма. Хотя фенотип, проявляющийся за счёт экспрессии генов, может подготовить организм к жизни в окружающей его среде, информация о среде не передаётся назад в гены. Гены могут изменяться в ответ на воздействия среды только посредством эволюционного процесса.
  • Гомеостаз. Физиологические процессы, позволяющие организму поддерживать постоянство своей внутренней среды независимо от изменений во внешней среде.
  • Энергия. Атрибут любого живого организма, существенный для его состояния.

Клеточная теория

Клетка — базовая единица жизни. Согласно клеточной теории, всё живое вещество состоит из одной или более клеток, либо из продуктов секреции этих клеток. Например, раковины, кости, кожа, слюна, желудочный сок, ДНК, вирусы. Все клетки происходят из других клеток путём клеточного деления, и все клетки многоклеточного организма происходят из одной оплодотворённой яйцеклетки. Даже протекание патологических процессов, таких как бактериальная или вирусная инфекция, зависит от клеток, являющихся их фундаментальной частью[17].

Эволюция

Центральная организующая концепция в биологии состоит в том, что жизнь со временем изменяется и развивается посредством эволюции, и что все известные формы жизни на Земле имеют общее происхождение. Это обусловило сходство основных единиц и процессов жизнедеятельности, упоминавшихся выше. Понятие эволюции было введено в научный лексикон Жаном-Батистом Ламарком в 1809 году. Чарльз Дарвин через пятьдесят лет установил, что её движущей силой является естественный отбор, так же как искусственный отбор сознательно применяется человеком для создания новых пород животных и сортов растений[18]. Позже в синтетической теории эволюции дополнительным механизмом эволюционных изменений был постулирован генетический дрейф.

Эволюционная история видов, описывающая их изменения и генеалогические отношения между собой, называется филогенез. Информация о филогенезе накапливается из разных источников, в частности, путём сравнения последовательностей ДНК или ископаемых останков и следов древних организмов. До XIX века считалось, что в определённых условиях жизнь может самозарождаться. Этой концепции противостояли последователи принципа, сформулированного Уильямом Гарвеем: «всё из яйца» («Omne vivum ex ovo», лат.), основополагающего в современной биологии. В частности, это означает, что существует непрерывная линия жизни, соединяющая момент первоначального её возникновения с настоящим временем. Любая группа организмов имеет общее происхождение, если у неё имеется общий предок. Все живые существа на Земле, как ныне живущие, так и вымершие, происходят от общего предка или общей совокупности генов. Общий предок всех живых существ появился на Земле около 3,5 млрд. лет назад. Главным доказательством теории общего предка считается универсальность генетического кода (см. происхождение жизни).

Теория гена

Основная статья: Ген

Форма и функции биологических объектов воспроизводятся из поколения в поколение генами, которые являются элементарными единицами наследственности. Физиологическая адаптация к окружающей среде не может быть закодирована в генах и быть унаследованной в потомстве (см. Ламаркизм). Примечательно, что все существующие формы земной жизни, в том числе, бактерии, растения, животные и грибы, имеют одни и те же основные механизмы, предназначенные для копирования ДНК и синтеза белка. Например, бактерии, в которые вводят ДНК человека, способны синтезировать человеческие белки.

Совокупность генов организма или клетки называется генотипом. Гены хранятся в одной или нескольких хромосомах. Хромосома — длинная цепочка ДНК, на которой может быть множество генов. Если ген активен, то последовательность его ДНК копируется в последовательности РНК посредством транскрипции. Затем рибосома может использовать РНК, чтобы синтезировать последовательность белка, соответствующую коду РНК, в процессе, именуемом трансляция. Белки могут выполнять каталитическую (ферментативную) функцию, транспортную, рецепторную, защитную, структурную, двигательную функции.

Гомеостаз

Гомеостаз — способность открытых систем регулировать свою внутреннюю среду так, чтобы поддерживать её постоянство посредством множества корректирующих воздействий, направляемых регуляторными механизмами. Все живые существа, как многоклеточные, так и одноклеточные, способны поддерживать гомеостаз. На клеточном уровне, например, поддерживается постоянная кислотность внутренней среды (pH). На уровне организма у теплокровных животных поддерживается постоянная температура тела. В ассоциации с термином экосистема под гомеостазом понимают, в частности, поддержание растениями постоянной концентрации атмосферной двуокиси углерода на Земле.

Энергия

Основная статья: Биоэнергетика

Выживание любого организма зависит от постоянного притока энергии. Энергия черпается из веществ, которые служат пищей, и посредством специальных химических реакций используется для построения и поддержания структуры и функций клеток. В этом процессе молекулы пищи используются как для извлечения энергии, так и для синтеза биологических молекул собственного организма.

Первичным источником энергии для 99 % земных существ является световая энергия, главным образом солнечная (для 1 % — хемосинтез). Световая энергия посредством фотосинтеза превращается растениями в химическую (органические молекулы) в присутствии воды и некоторых минералов. Часть полученной энергии затрачивается на наращивание биомассы и поддержание жизни, другая часть теряется в виде тепла и отходов жизнедеятельности. Общие механизмы превращения химической энергии в полезную для поддержания жизни называются дыхание и метаболизм.

Уровни организации жизни

Шесть основных структурных уровней жизни:

  • Молекулярный
  • Клеточный
  • Организменный
  • Популяционно-видовой
  • Биогеоценотический
  • Биосферный

Биологические дисциплины

Акарология — Анатомия — Альгология — Антропология — Бактериология — Биогеография — Биогеоценология — Биотехнология — Биоинформатика — Биология океана — Биология развития — Биометрия — Бионика — Биосемиотика — Биоспелеология — Биофизика — Биохимия — Ботаника — Биомеханика — Биоценология — Биоэнергетика — Бриология — Вирусология — Генетика — Геоботаника — Герпетология — Гидробиология — Гистология — Дендрология — Зоология — Зоопсихология — Иммунология — Ихтиология — Колеоптерология — Космическая биология — Ксенобиология — Лепидоптерология — Лихенология — Микология — Микробиология — Мирмекология — Молекулярная биология — Морфология — Нейробиология — Палеонтология — Палинология — Паразитология — Радиобиология — Систематика — Системная биология — Синтетическая биология — Спонгиология — Таксономия — Теоретическая биология — Териология — Токсикология — Фенология — Физиология — Физиология ВНД — Физиология животных и человека — Физиология растений — Фитопатология — Цитология — Эволюционная биология — Эмбриология — Эндокринология — Энтомология — Этология

Биологическая литература

Первоисточниками информации по биологии являются научные журналы, списки которых предоставляет ряд учреждений, как российских, так и зарубежных:

и др.

Данные первоисточников обобщают авторы обзорных публикаций, которые могут представлять собой как журнальные статьи, так и монографии. На следующем уровне обобщения стоят учебники и справочные пособия.

Популяризация биологии

Биологическая безопасность

См. также

Примечания

  1. Treviranus, Gottfried Reinhold, Biologie : oder Philosophie der lebenden Natur für Naturforscher und Aerzte, 1802
  2. 1 2 Avila, Vernon L. Biology: investigating life on earth. — Boston: Jones and Bartlett, 1995. — P. 11—18. — ISBN 0-86720-942-9
  3. Campbell Neil A. Biology: Exploring Life. — Boston, Massachusetts: Pearson Prentice Hall. — ISBN 0-13-250882-6
  4. King, TJ & Roberts, MBV Biology: A Functional Approach. — Thomas Nelson and Sons. — ISBN 978-0174480358
  5. Conway Zirkle (1941), Natural Selection before the «Origin of Species», Proceedings of the American Philosophical Society 84 (1): 71-123.
  6. D. Craig Brater and Walter J. Daly (2000), «Clinical pharmacology in the Middle Ages: Principles that presage the 21st century», Clinical Pharmacology & Therapeutics 67 (5), p. 447—450 [449].
  7. Islamic medicine, Hutchinson Encyclopedia.
  8. S. A. Al-Dabbagh (1978). «Ibn Al-Nafis and the pulmonary circulation», The Lancet 1, p. 1148.
  9. 1 2 Mayr, E The Growth of Biological Thought. — Belknap Press. — ISBN 978-0674364462
  10. Magner, LN A History of the Life Sciences. — TF-CRC. — ISBN 978-0824708245
  11. Futuyma, DJ Evolution. — Sinauer Associates. — ISBN 978-0878931873
  12. Coleman, W Biology in the Nineteenth Century: Problems of Form, Function and Transformation. — Cambridge University Press. — ISBN 978-0521292931
  13. Allen, GE Life Science in the Twentieth Century. — Cambridge University Press. — ISBN 978-0521292962
  14. Fruton, JS Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. — Yale University Press. — ISBN 978-0300076080
  15. Morange, M & Cobb, M A History of Molecular Biology. — Harvard University Press. — ISBN 978-0674001695
  16. Smocovitis, VB Unifying Biology. — Princeton University Press. — ISBN 978-0691033433
  17. Mazzarello, P (1999). «A unifying concept: the history of cell theory». Nature Cell Biology 1: E13–E15. DOI:10.1038/8964.
  18. Darwin, Charles (1859). On the Origin of Species, 1st, John Murray

Литература

  • Большой энциклопедический словарь. Биология. — М.: Большая Российская энциклопедия, 1999.
  • Биология // Биологический энциклопедический словарь — М.: Сов. Энциклопедия, 1986 г.

Ссылки

dic.academic.ru

белки — урок. Биология, Общие биологические закономерности (9–11 класс).

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые (имея в своём составе карбоксильную и аминогруппы) обладают свойствами кислоты и основания (амфотерны).

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего \(20\) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

 

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

 

Разрушение первичной структуры необратимо.

 

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

Функции белков

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).
  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении \(1\) г белка до конечных продуктов выделяется \(17,6\) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

 

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://ours-nature.ru/lib/b/book/1063747118/348

www.yaklass.ru

Клетка — Википедия

Кле́тка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов. Обладает собственным обменом веществ, способна к самовоспроизведению. Организм, состоящий из одной клетки, называется одноклеточным (многие простейшие и бактерии). Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, называется цитологией. Также принято говорить о биологии клетки, или клеточной биологии.

Срез пробкового дерева из книги Роберта Гука «Микрография», 1635—1703 Первое наблюдение за клетками, с использованием раннего микроскопа[1]. Это привело к развитию теории клеток.

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный открытием закона Гука). В 1665 году, пытаясь понять, почему пробковое дерево хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему соты в ульях медоносных пчёл, и он назвал эти ячейки клетками (по-английски cell означает «ячейка, клетка»).

В 1675 году итальянский врач Марчелло Мальпиги подтвердил клеточное строение растений, а в 1681 году — английский ботаник Неемия Грю. О клетке стали говорить как о «пузырьке, наполненном питательным соком». В 1674 году голландский мастер Антоний ван Левенгук с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы (инфузории, амёбы, бактерии). Также Левенгук впервые наблюдал животные клетки — эритроциты и сперматозоиды. Таким образом, к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. В 1802—1808 годах французский исследователь Шарль-Франсуа Мирбель установил, что растения состоят из тканей, образованных клетками. Ж. Б. Ламарк в 1809 году распространил идею Мирбеля о клеточном строении и на животные организмы. В 1825 году чешский учёный Я. Пуркине открыл ядро яйцеклетки птиц, а в 1839 ввёл термин «протоплазма». В 1831 году английский ботаник Р. Броун впервые описал ядро растительной клетки, а в 1833 году установил, что ядро является обязательным органоидом клетки растения. С тех пор главным в организации клеток считается не оболочка, а содержимое.

Клеточная теория[править | править код]

Клеточная теория строения организмов была сформирована в 1839 году немецкими учёными, зоологом Теодором Шванном и ботаником М. Шлейденом, и включала в себя три положения. В 1858 году Рудольф Вирхов дополнил её ещё одним положением, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э. Страсбургер — у растительных.

Клеточная теория является одной из основополагающих идей современной биологии, она стала неопровержимым доказательством единства всего живого и фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. На сегодняшний день теория содержит такие утверждения:

  1. Клетка — элементарная единица строения, функционирования, размножения и развития всех живых организмов. Вне клетки нет жизни.
  2. Клетка — целостная система, содержащая большое количество связанных друг с другом элементов — органелл.
  3. Клетки различных организмов похожи (гомологичны) по строению и основным свойствам и имеют общее происхождение.
  4. Увеличение количества клеток происходит путём их деления, после репликации их ДНК: клетка — от клетки.
  5. Многоклеточный организм — система из большого количества клеток, объединённых в системы тканей и органов, связанных между собой гуморальной и нервной регуляциями.
  6. Клетки многоклеточных организмов обладают одинаковым полным фондом генетического материала этого организма, всеми возможными потенциями для проявления этого материала, — но отличаются по уровню экспрессии (работы) отдельных генов, что приводит к их морфологическому и функциональному разнообразию — дифференцировке[2].

Количество и формулировки отдельных положений современной клеточной теории в разных источниках могут отличаться.

Впервые клетки удалось увидеть только после создания оптических (световых) микроскопов. С того времени микроскопия остается одним из важнейших методов исследования клеток. Световая микроскопия, несмотря на небольшое разрешение, позволяла наблюдать за живыми клетками. В XX веке была изобретена электронная микроскопия, которая позволила изучить ультраструктуру клеток.

Для изучения функций клеток и их частей используют разнообразные биохимические методы — как препаративные, например фракционирование методом дифференциального центрифугирования, так и аналитические. Для экспериментальных и практических целей используют методы . Все упомянутые методические подходы могут использоваться в сочетании с методами культуры клеток.

Оптическая микроскопия[править | править код]

В оптическом микроскопе увеличение объекта достигается благодаря серии линз, через которые проходит свет. Максимальное увеличение составляет более 1000 раз. Также важной характеристикой является разрешение — расстояние между двумя точками, которые ещё распознаются отдельно. Разрешение характеризует чёткость изображения. Эта величина ограничивается длиной световой волны, и даже при использовании самого коротковолнового света — ультрафиолетового — можно достичь разрешения только около 200 нм; такое разрешение было получено ещё в конце XIX века. Малейшие структуры, которые можно наблюдать под оптическим микроскопом, это митохондрии и бактерии. Их линейный размер составляет примерно 500 нм. Однако объекты размером меньше 200 нм видны в световом микроскопе, если они сами излучают свет. Эта особенность используется в флуоресцентной микроскопии, когда клеточные структуры или отдельные белки связываются со специальными флуоресцентными белками или антителами с флуоресцентными метками. На качество изображения, полученного с помощью оптического микроскопа, влияет также контрастность — её можно увеличить, используя различные методы окраски клеток. Для изучения живых клеток используют фазово-контрастную, дифференциальную интерференционно-контрастную и темнопольную микроскопию. Конфокальные микроскопы позволяют улучшить качество флуоресцентных изображений[3][4].

Изображения, полученные с помощью оптической микроскопии

Электронная микроскопия[править | править код]

В 30-х годах XX века был сконструирован электронный микроскоп, в котором вместо света через объект пропускается пучок электронов. Теоретический предел разрешения для современных электронных микроскопов составляет около 0,002 нм, однако из практических причин для биологических объектов достигается разрешение только около 2 нм. С помощью электронного микроскопа можно изучать ультраструктуру клеток. Различают два основных типа электронной микроскопии: сканирующую и трансмиссионную. Сканирующая (растровая) электронная микроскопия (РЭМ) используется для изучения поверхности объекта. Образцы зачастую покрывают тонкой плёнкой золота. РЭМ позволяет получать объёмные изображения. Трансмиссионная (просвечивающая) электронная микроскопия (ПЭМ) — используется для изучения внутреннего строения клетки. Пучок электронов пропускается через объект, предварительно обработанный тяжёлыми металлами, которые накапливаются в определённых структурах, увеличивая их электронную плотность. Электроны рассеиваются на участках клетки с большей электронной плотностью, в результате чего на изображениях эти области выглядят темнее[3][4].

Фракционирование клеток[править | править код]

Для установления функций отдельных компонентов клетки важно выделить их в чистом виде, чаще всего это делается с помощью метода дифференциального центрифугирования. Разработаны методики, позволяющие получить чистые фракции любых клеточных органелл. Получение фракций начинается с разрушения плазмалеммы и образования клеток. Гомогенат последовательно центрифугируется при различных скоростях, на первом этапе можно получить четыре фракции: (1) ядер и крупных обломков клеток, (2) митохондрий, пластид, лизосом и пероксисом, (3)  — пузырьков аппарата Гольджи и эндоплазматического ретикулума, (4) рибосом, в останутся белки и более мелкие молекулы. Дальнейшее дифференциальное центрифугирование каждой из смешанных фракций позволяет получить чистые препараты органелл, к которым можно применять разнообразные биохимические и микроскопические методы[2].

Все клеточные формы жизни на Земле можно разделить на два надцарства на основании строения составляющих их клеток:

  • прокариоты (доядерные) — более простые по строению, возникли в процессе эволюции раньше;
  • эукариоты (ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Содержимое клетки отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органеллы и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждая из органелл клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка[править | править код]

Прокариоты (от др.-греч. πρό — ‘перед’, ‘до’ и κάρῠον — ‘ядро’) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды. Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма.

Эукариотическая клетка[править | править код]

Эукариоты (эвкариоты, от др.-греч. εὖ ‘хорошо’, ‘полностью’ и κάρῠον — ‘ядро’) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот есть система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Фимбрии кишечной палочки, которые позволяют ей прикрепляться к субстрату (ОМ)

Клетки двух основных групп прокариот — бактерий и архей — похожи по структуре, характерными их признаками являются отсутствие ядра и мембранных органелл.

Основными компонентами прокариотической клетки являются:

  • Клеточная стенка, которая окружает клетку извне, защищает её, придаёт устойчивую форму, предотвращающую от осмотического разрушения. У бактерий клеточная стенка состоит из пептидогликана (муреина), построенного из длинных полисахаридных цепей, соединённых между собой короткими пептидными перемычками. По строению клеточной стенки различают две группы бактерий:
    Клеточная стенка архей не содержит муреина, а построена в основном из разнообразных белков и полисахаридов[4].
  • Капсула — имеющаяся у некоторых бактерий слизистая оболочка, расположенная снаружи от клеточной стенки. Состоит в основном из разнообразных белков, углеводов и уроновых кислот. Капсулы защищают клетки от высыхания, могут помогать бактериям в колониях удерживаться вместе, а индивидуальным бактериям — прикрепляться к различным субстратам. Кроме этого, капсулы предоставляют клетке дополнительную защиту: например, капсулированные штаммы пневмококков свободно размножаются в организме и вызывают воспаление лёгких, тогда как некапсулированные быстро уничтожаются иммунной системой и являются абсолютно безвредными[5].
  • Пили или ворсинки — тонкие волоскоподобные выросты, что присутствуют на поверхности бактериальных клеток. Существуют различные типы пилей, из которых наиболее распространёнными являются:
  • Жгутики — органеллы движения некоторых бактерий. Бактериальный жгутик построен значительно проще эукариотического, и он в 10 раз тоньше, не покрыт плазматической мембраной и состоит из одинаковых молекул белков, которые образуют цилиндр. В мембране жгутик закреплён при помощи базального тела[4].
  • Плазматическая и внутренние мембраны. Общий принцип устройства клеточных мембран не отличается от эукариот, однако в химическом составе мембраны есть немало различий, в частности, в мембранах прокариот отсутствуют молекулы холестерина и некоторых липидов, присущих мембранам эукариот. Большинство прокариотических клеток (в отличие от эукариотических) не имеют внутренних мембран, которые разделяют цитоплазму на отдельные компартменты. Только у некоторых фотосинтетических и аэробных бактерий плазмалемма образует вгибание внутрь клетки, что выполняет соответствующие метаболические функции[4].
  • Нуклеоид — не ограниченный мембранами участок цитоплазмы, в котором расположена кольцевая молекула ДНК — «бактериальная хромосома», где хранится весь генетический материал клетки[4].
  • Плазмиды — небольшие дополнительные кольцевые молекулы ДНК, несущие обычно всего несколько генов. Плазмиды, в отличие от бактериальной хромосомы, не являются обязательным компонентом клетки. Обычно они придают бактерии определённые полезные для неё свойства, такие как устойчивость к антибиотикам, способность усваивать из среды определённые энергетические субстраты, способность инициировать половой процесс и т. д.[4][5]
  • Рибосомы прокариот, как и у всех других живых организмов, отвечают за осуществление процесса трансляции (одного из этапов биосинтеза белка). Однако бактериальные рибосомы несколько меньше, чем эукариотические (коэффициенты седиментации 70S и 80S соответственно), и имеют другой состав белков и РНК. Из-за этого бактерии, в отличие от эукариот, чувствительны к таким антибиотикам, как эритромицин и тетрациклин, которые избирательно действуют на 70S-рибосомы[5].
  • Эндоспоры — окружённые плотной оболочкой структуры, содержащие ДНК бактерии и обеспечивающее выживание в неблагоприятных условиях. К образованию эндоспор способны лишь некоторые виды прокариот, например представители родов Clostridium (C. tetani — возбудитель столбняка, C. botulinum — возбудитель ботулизма, C. perfringens — возбудитель газовой гангрены и т. п.) и Bacillus (в частности B. anthracis — возбудитель сибирской язвы). Для образования эндоспоры клетка реплицирует свою ДНК и окружает копию плотной оболочкой, из созданной структуры удаляется избыток воды, и в ней замедляется метаболизм[4]. Споры бактерий могут выдерживать довольно жёсткие условия среды, такие как длительное высушивание, кипячение, коротковолновое облучение и др.[5]
Схематическое изображение животной клетки (подписи составных частей — ссылки на статьи про них).

Поверхностный комплекс животной клетки[править | править код]

Состоит из гликокаликса, плазмалеммы и расположенного под ней кортикального слоя цитоплазмы. Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной, цитолеммой и т. д. Её толщина — около 10 нанометров. Обеспечивает разграничение клетки и внешней среды, а также пропускание внутрь и наружу некоторых веществ.

На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира — гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет собой «заякоренные» в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции.

Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в неё молекулами белков, в частности, поверхностных антигенов и рецепторов.

В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета — упорядоченные определённым образом актиновые микрофиламенты. Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий. При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).

Структура цитоплазмы[править | править код]

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органеллы. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами», и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Рибосомы[править | править код]

Рибосомы — органоиды, необходимые клетке для синтеза белка. Их размер составляет примерно 20—30 нм. В клетке их насчитывается несколько миллионов. Рибосомы образованы из двух субъединиц: большой и малой, состоящих из четырёх молекул РНК и нескольких молекул белков. У эукариотических клеток рибосомы встречаются не только в цитоплазме, но и в митохондриях и хлоропластах. Рибосомы формируются в области ядрышек, а затем через ядерные поры выходят в цитоплазму.

Эндоплазматический ретикулум[править | править код]

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубочек, мешочков и плоских цистерн разных размеров), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к агранулярному (или гладкому) ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПС не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.

Аппарат Гольджи[править | править код]

Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен — цистерны, располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки — везикулы, отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

Ядро[править | править код]

Клеточное ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками.

Компартмент для ядра — кариотека — образован за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов яде

ru.wikipedia.org

Ядро – это в биологии: что такое ядерная оболочка, какую функцию выполняет, как происходит деление и из чего состоит

Биология клеток живых организмов изучает прокариотов, не имеющих ядра (nucleus, core). Для каких организмов характерно наличие ядра? Нуклеус — это центральный органоид эукариотов….

Важно! Основной функцией клеточного ядра является хранение и передача наследственной информации.

Структура

Что такое ядро? Из каких частей состоит ядро? Нижеперечисленные компоненты входят в состав нуклеуса:

  • Ядерная оболочка,
  • Нуклеоплазма,
  • Кариоматрикс,
  • Хроматин,
  • Нуклеолы.

Компоненты ядра

Ядерная оболочка

Кариолемма состоит из двух прослоек — наружной и внутренней, разделенных перинуклеарной полостью. Внешняя мембрана сообщается с шероховатыми эндоплазматическими канальцами. Ко внутренней оболочке прикрепляются фибриллярные протеины основы ядерного вещества. Между мембранами находится перинуклеарная полость, сформированная взаимным отталкиванием ионизированных органических молекул с аналогичными зарядами.

Кариолемма пронизана системой отверстий — пор, образованных белковыми молекулами. Через них рибосомы— структуры, в которых происходит синтез протеинов, а также оповестительные РНК проникают в цитоплазматическую сеть.

Межмембранные поры являются канальцами, заполненными водой. Их стенки сформированы специфическими белками — нуклеопоринами. Диаметр отверстия позволяет цитоплазме и содержимому ядра обмениваться мелкими молекулами. Нуклеиновые кислоты, а также высокомолекулярные белки не способны самостоятельно перетекать из одной части клетки в другую. Для этого существуют специальные транспортные протеины, активизация которых протекает с энергетическими затратами.

Высокомолекулярные соединения перемещаются через поры при помощи кариоферинов. Те, что транспортируют вещества из цитоплазмы в ядро, называются импортинами. Передвижение в обратном направлении осуществляют экспортины. В какой части ядра находится молекула РНК? Она путешествует по всей клетке.

Важно! Высокомолекулярные вещества не могут самостоятельно проникать через поры из ядра в клетку и обратно.

 Нуклеоплазма

Представлена кариоплазмой — гелеобразной массой, находящейся внутри двухслойной оболочки. В отличие от цитоплазмы, где ph &gt,7, внутри ядра среда кислая. Основными веществами, которые входят в состав нуклеоплазмы являются нуклеотиды, белки, катионы, РНК, ДНК, h3O.

Кариоматрикс

Какие компоненты входят в основу ядра? Она сформирована фибриллярными белками трехмерной структуры — ламинами. Играет роль скелета, препятствуя деформации органоида при механических воздействиях.

Хроматин

Это главное вещество, представленное совокупностью хромосом, часть из которых находится в активированном состоянии. Остальные упакованы в уплотненные глыбки. Их раскрытие происходит во время деления. В какой части ядра находится молекула, известная нам, как ДНК? Хромосомы состоят из генов, представляющих собой части молекулы ДНК. В них закреплена информация, передающая новым генерациям клеток наследственные признаки. Следовательно, в этой части ядра находится молекула ДНК.

В биологии выделяют следующие типы хроматина:

  • Эухроматин. Представляется нитевидными, деспирализированными, неокрашиваемыми образованиями. Существует в покоящемся ядре в период интерфазы между циклами деления клетки.
  • Гетерохроматин. Не активизированные спирализованные, легко окрашивающиеся участки хромосом.

Нуклеолы

Ядрышко — наиболее уплотненная структура из входящих в состав нуклеуса. Оно обладает, преимущественно округлыми формами, однако, имеются сегментированные, как у лейкоцитов. Ядро клетки некоторых организмов нуклеол не имеют. В других нуклеусах их может быть несколько. Вещество ядрышек представлено гранулами, являющимися субъединицами рибосом, а также фибриллами, представляющими собой молекулы РНК.

Ядрышко: строение и функции

Нуклеолы представлены нижеперечисленными структурными типами:

  • Ретикулярный. Типичный для большинства клеток. Отличается высокой концентрацией уплотненных фибрилл и гранул.
  • Компактный. Характеризуется множественностью фибриллярных скоплений. Встречается в делящихся клетках.
  • Кольцеобразный. Характерен для лимфоцитов и соединительнотканных целл.
  • Остаточный. Преобладает в клетках, где процесс деления не происходит.
  • Обособленный. Все составляющие нуклеолы разделены, пластические действия невозможны.

Функции

Какую функцию выполняет ядро? Нуклеусу характерны следующие обязанности:

  • Хранение генетической информации,
  • Передача наследственных признаков,
  • Размножение,
  • Запрограммированная гибель.

Хранение генетической информации

Генетические коды хранятся в хромосомах. Они отличаются формой и размерами. Особи разного вида имеют неодинаковое количество хромосом. Комплекс признаков, характерный для хранилищ наследственной информации данного вида называют кариотипом.

Важно! Кариотип — это комплекс признаков, характерный для хромосомного состава организмов данного вида.

Различают гаплоидную, диплоидную, полиплоидную совокупность хромосом.

Клетки тела человека содержат 23 разновидности хромосом. В яйцеклетке и спермии содержится гаплоидный, то есть, одинарный их набор. При оплодотворении хранилища обоих клеток объединяются, образуя двойной — диплоидный комплект. Клеткам культурных растений присущ триплоидный или тетраплоидный кариотип.

Хранение генетической информации

Передача наследственных признаков

Какие процессы жизнедеятельности происходят в ядре? Генная кодировка передается в процессе считывания информации, результатом которой является образование матричной (информационной) РНК. Экспортины выводят рибонуклеиновую кислоту через нуклеарные поры в цитоплазму. Рибосомы используют генетические коды для синтеза необходимых организму белков.

Важно! Синтез белков происходит в цитоплазматических рибосомах на основании закодированной генетической информации, доставленной информационной РНК.

Размножение

Прокариоты размножаются просто. Бактерии обладают единственной молекулой ДНК. В процессе деления она копирует саму себя, прикрепляясь ко клеточной оболочке. Мембрана врастает между двумя соединениями и образуются два новых организма.

У эукариотов различают амитоз, митоз и мейоз:

  • Амитоз. Деление ядра происходит без дробления клетки. Образуются двухъядерные целлы. При следующем делении возможно возникновение полинуклеарных образований. Для каких организмов характерно такое размножение? Ему подвержены стареющие, нежизнеспособные, а также опухолевые клетки. В некоторых ситуациях амитотическое деление с образованием нормальных клеток происходит в роговице, печени, хрящевых текстурах, а также тканях некоторых растений.
  • Митоз. В этом случае деление ядра начинается его разрушением. Образуется веретено дробления, при помощи которого парные хромосомы разводятся по разным концам клетки. Происходит репликация носителей наследственности, после чего формируются два ядра. После этого веретено деления демонтируется, формируется ядерная оболочка, которая разделяет одну клетку на две.
  • Мейоз. Сложный процесс, при котором деление ядра происходит без удвоения разошедшихся хромосом. Характерен для образования половых клеток — гамет, имеющих гаплоидный набор носителей наследственности.

Митоз

Запрограммированная гибель

Генетическая информация предусматривает продолжительность жизни клетки, и по истечении отведенного времени запускает процесс апоптоза (греч. — листопад). Хроматин конденсируется, ядерная мембрана разрушается. Целла распадается на фрагменты, ограничивающиеся плазматической оболочкой. Апоптотические тельца, минуя стадию воспаления, поглощаются макрофагами, либо соседними клетками.

Для наглядности строение ядра и функции, выполняемые его частями представлены таблицей

Элемент ядра Особенности строения Выполняемые функции
Оболочка Двухслойная мембрана Разграничение содержимого нуклеуса и цитоплазмы
Поры Отверстия в оболочке Экспорт — импорт РНК
Нуклеоплазма Гелеобразная консистенция Среда для биохимических превращений
Кариоматрикс Фибриллярные белки Поддержка структуры, защита от деформирования
Хроматин Эухроматин, гетерохроматин Хранение генетической информации
Нуклеола Фибриллы и гранулы Выработка рибосом

Внешний вид

Форма определяется конфигурацией мембраны. Отмечают нижеперечисленные виды ядер:

  • Круглая. Наиболее часто встречаемая. Например, большую часть лимфоцита занимает нуклеус.
  • Вытянутая. Подковообразное nucleus находят у несозревшего нейтрофила.
  • Сегментированная. В оболочке формируются перегородки. Образуются привязанные друг к другу сегменты, такие как у зрелого нейтрофила.
  • Разветвленная. Обнаруживается в ядрах клеток членистоногих.

Количество ядер

В зависимости от выполняемых функций, целлы могут обладать одним или несколькими ядрами либо не иметь их вообще. Различают следующие виды клеток:

  • Безъядерные. Форменные компоненты крови высших животных — эритроциты, тромбоциты являются переносчиками важных веществ. Чтобы освободить место для гемоглобина или фибриногена костный мозг вырабатывает эти элементы безъядерными. Они не способны делиться и по прохождении запрограммированного времени отмирают.
  • Одноядерные. Таково большинство клеток живых организмов.
  • Бинуклеарные. Печёночные гепатоциты выполняют двойную функцию — детоксикационную и производственную. Синтезируется гем, необходимый для выработки гемоглобина. Для этих целей необходимы два ядра.
  • Многоядерные. Миоциты мышц выполняют колоссальный объем работы, для ее выполнения необходимы дополнительные ядра. По этой же причине полинуклеарностью отличаются клетки покрытосеменных растений.

Хромосомные патологии

Многие болезни являются следствием нарушения связаны с нарушениями хромосомного состава. Наиболее известны нижеперечисленные симптомокомплексы:

  • Дауна. Вызван наличием лишней двадцать первой хромосомой (трисомия).
  • Эдвардса. Присутствует лишняя восемнадцатая хромосома.
  • Патау. Трисомия 13.
  • Тернера. Не достает хромосомы Х.
  • Клайнфелтера. Характеризуется лишними X либо Y-хромосомами.

Недуги, вызванные разладом в функционировании составных частей ядра не всегда связаны с хромосомными аномалиями. Мутации, которые влияют на отдельные белки ядра вызывают следующие заболевания:

  • Ламинопатия. Проявляется преждевременным старением.
  • Аутоиммунные заболевания. Красная волчанка — диффузное поражение соединительнотканных текстур, рассеянный склероз — разрушение миелиновых оболочек нервов.

Важно! Хромосомные аномалии приводят к тяжелым заболеваниям.

Строение ядра

Биология в картинках: Строение и функции ядра

Вывод

Клеточное ядро отличается сложным строением и выполняет жизненно важные функции.Оно является хранилищем и передатчиком наследственной информации, руководит синтезом белков и процессами деления клеток. Хромосомные аномалии являются причинами тяжелых заболеваний.

tvercult.ru


Смотрите также

     
     
Лекарственные растения для лечения заболеваний на букву А Лекарственные растения для лечения заболеваний на букву Б Лекарственные растения для лечения заболеваний на букву В
Лекарственные растения для лечения заболеваний на букву Г Лекарственные растения для лечения заболеваний на букву Д Лекарственные растения для лечения заболеваний на букву Е
Лекарственные растения для лечения заболеваний на букву Ж Лекарственные растения для лечения заболеваний на букву З Лекарственные растения для лечения заболеваний на букву И
Лекарственные растения для лечения заболеваний на букву К Лекарственные растения для лечения заболеваний на букву Л Лекарственные растения для лечения заболеваний на букву М
Лекарственные растения для лечения заболеваний на букву Н Лекарственные растения для лечения заболеваний на букву О Лекарственные растения для лечения заболеваний на букву П
Лекарственные растения для лечения заболеваний на букву Р Лекарственные растения для лечения заболеваний на букву С Лекарственные растения для лечения заболеваний на букву Т
Лекарственные растения для лечения заболеваний на букву У Лекарственные растения для лечения заболеваний на букву Ф
Лекарственные растения для лечения заболеваний на букву Ц Лекарственные растения для лечения заболеваний на букву Ч Лекарственные растения для лечения заболеваний на букву Ш
Лекарственные растения для лечения заболеваний на букву Э Лекарственные растения для лечения заболеваний на букву Ю Лекарственные растения для лечения заболеваний на букву Я
 
Карта сайта, XML.