ГлавнаяСбор Сушка   Поиск
     
     
Лекарственные растения на букву А Лекарственные растения на букву Б Лекарственные растения на букву В
Лекарственные растения на букву Г Лекарственные растения на букву Д Лекарственные растения на букву Е
Лекарственные растения на букву Ж Лекарственные растения на букву З Лекарственные растения на букву И
Лекарственные растения на букву К Лекарственные растения на букву Л Лекарственные растения на букву М
Лекарственные растения на букву Н Лекарственные растения на букву О Лекарственные растения на букву П
Лекарственные растения на букву Р Лекарственные растения на букву С Лекарственные растения на букву Т
Лекарственные растения на букву У Лекарственные растения на букву Ф Лекарственные растения на букву Х
Лекарственные растения на букву Ц Лекарственные растения на букву Ч Лекарственные растения на букву Ш
Лекарственные растения на букву Щ Лекарственные растения на букву Э Лекарственные растения на букву Ю,Я
 

Глицина химические свойства


Глицин — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 января 2020; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 января 2020; проверки требует 1 правка.
Глицин

({{{картинка}}})
({{{картинка3D}}})
({{{картинка малая}}})
Систематическое
наименование
аминоуксусная кислота
Сокращения Гли, G, Gly
GGU,GGC,GGA,GGG
Хим. формула C2H5NO2
Рац. формула NH2 —CH2 —COOH
Молярная масса 75,07 г/моль
Плотность 1,607 г/см³
Температура
 • плавления 233 °C
 • разложения 290 °C
Удельная теплота испарения −528,6 Дж/кг
Удельная теплота плавления −981,1 Дж/кг
Константа диссоциации кислоты pKa{\displaystyle pK_{a}} 2,34
9,58
Растворимость
 • в воде хорошая, 24.99 г/100 мЛ (25 °C)[1]
растворим в пиридине, умеренно растворим в этаноле, нерастворимый в эфире
Рег. номер CAS 56-40-6
PubChem 750
Рег. номер EINECS 200-272-2
SMILES
InChI
ChEBI 15428 и 57305
ChemSpider 730
ЛД50 2,6 г/кг
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Глици́н (аминоуксусная кислота, аминоэтановая кислота) — простейшая алифатическая аминокислота, единственная протеиногенная аминокислота, не имеющая оптических изомеров. Неэлектролит. Название глицина происходит от др.-греч. γλυκύς, glycys — сладкий, из-за сладковатого вкуса аминокислоты. Применяется в медицине в качестве ноотропного лекарственного средства. Глицином («глицин-фото», параоксифенилглицин) также иногда называют п-гидроксифениламиноуксусную кислоту, проявляющее вещество в фотографии.

Получение[править | править код]

Глицин можно получить в ходе хлорирования карбоновых кислот и дальнейшего взаимодействия с аммиаком:

Ch4COOH→Cl2ClCh3COOH→Nh4h3NCh3COOH{\displaystyle {\mathsf {CH_{3}COOH{\xrightarrow[{}]{Cl_{2}}}ClCH_{2}COOH{\xrightarrow[{}]{NH_{3}}}H_{2}NCH_{2}COOH}}}

Соединения[править | править код]

Глицин, как кислота, с ионами металлов образует сложные соли (глицинаты или хелаты)[2], Глицинат натрия, Глицинат железа, Глицинат меди, Глицинат цинка, Глицинат марганца и др.[3]

Глицин входит в состав многих белков и биологически активных соединений. Из глицина в живых клетках синтезируются порфирины и пуриновые основания.

Глицин также является нейромедиаторной аминокислотой, проявляющей двоякое действие. Глициновые рецепторы имеются во многих участках головного мозга и спинного мозга. Связываясь с рецепторами (кодируемые генами GLRA1, GLRA2, GLRA3 и GLRB), глицин вызывает «тормозящее» воздействие на нейроны, уменьшает выделение из нейронов «возбуждающих» аминокислот, таких, как глутаминовая кислота, и повышает выделение ГАМК. Также глицин связывается со специфическими участками NMDA-рецепторов и, таким образом, способствует передаче сигнала от возбуждающих нейротрансмиттеров глутамата и аспартата.[4]

Поскольку глицин является нейромедиатором в центральной нервной системе (ЦНС), его содержание в нейронах строго регулируется. Глицин, наряду с другими небольшими нейтральными аминокислотами, такими как аланин, пролин, серин и гамма-аминомасляная кислота (ГАМК), не проникает через гематоэнцефалический барьер: пассивная диффузия невозможна из-за их полярности, переносчики для различных вариантов активного или облегченного транспорта отсутствуют. Небольшие нейтральные аминокислоты, включая глицин, являющиеся заменимыми, переносятся аланин-предпочитающим белком-переносчиком (A-типа). Белок-переносчик A-типа отсутствует на поверхности эндотелиоцитов гематоэнцефалического барьера со стороны просвета кровеносного сосуда, то есть механизм активного транспорта глицина сквозь гематоэнцефалический барьер в нейроны отсутствует. В противоположность этому белок-переносчик A-типа располагается на мембране эндотелиоцита со стороны нейронов, принимая глицин и другие небольшие нейтральные аминокислоты со стороны нейронов и перенося их внутрь эндотелиоцита и далее в кровь[5]. Такие системы переносчиков активно участвуют в регулировании концентрации аминокислот в межклеточной жидкости и особенно важны для поддержания низких концентраций аминокислот-нейромедиаторов, таких как глутамат, аспарат и глицин[6]. Для использования в качестве медиатора и для синтеза белка нейроны используют глицин, синтезируемый астроцитами из серина путем деметилирования последнего. Реакция катализируется серингидроксиметилтрансферазой, коферментом которой является тетрагидрофолат, акцептирующий метиленоксидную группу серина. Поскольку серин также практически не проникает из кровеносного русла через гематоэнцефалический барьер, он синтезируется de novo из 3-фосфоглицерата, являющегося предшественником фосфоенолпирувата в гликолитическом цикле, то есть в большом количестве присутствующем в клетках, включая астроциты[7].

Производители фармакологических препаратов глицина заявляют, что глицин оказывает успокаивающее, слабое противотревожное и антидепрессивное действие, ослабляет выраженность побочных эффектов антипсихотических средств (нейролептиков), снотворных и противосудорожных средств, включён в ряд терапевтических практик по снижению алкогольной, опиатной и других видов абстиненции как вспомогательный препарат, оказывающий слабовыраженное

ru.wikipedia.org

Глицин — Википедия

Глицин

({{{картинка}}})
({{{картинка3D}}})
({{{картинка малая}}})
Систематическое
наименование
аминоуксусная кислота
Сокращения Гли, G, Gly
GGU,GGC,GGA,GGG
Хим. формула C2H5NO2
Рац. формула NH2 —CH2 —COOH
Молярная масса 75,07 г/моль
Плотность 1,607 г/см³
Температура
 • плавления 233 °C
 • разложения 290 °C
Удельная теплота испарения −528,6 Дж/кг
Удельная теплота плавления −981,1 Дж/кг
Константа диссоциации кислоты pKa{\displaystyle pK_{a}} 2,34
9,58
Растворимость
 • в воде хорошая, 24.99 г/100 мЛ (25 °C)[1]
растворим в пиридине, умеренно растворим в этаноле, нерастворимый в эфире
Рег. номер CAS 56-40-6
PubChem 750
Рег. номер EINECS 200-272-2
SMILES
InChI
ChEBI 15428 и 57305
ChemSpider 730
ЛД50 2,6 г/кг
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Глици́н (аминоуксусная кислота, аминоэтановая кислота) — простейшая алифатическая аминокислота, единственная протеиногенная аминокислота, не имеющая оптических изомеров. Неэлектролит. Название глицина происходит от др.-греч. γλυκύς, glycys — сладкий, из-за сладковатого вкуса аминокислоты. Применяется в медицине в качестве ноотропного лекарственного средства. Глицином («глицин-фото», параоксифенилглицин) также иногда называют п-гидроксифениламиноуксусную кислоту, проявляющее вещество в фотографии.

Химические свойства

Получение

Глицин можно получить в ходе хлорирования карбоновых кислот и дальнейшем взаимодействии с аммиаком :

Ch4COOH→Cl2ClCh3COOH→Nh4h3NCh3COOH{\displaystyle {\mathsf {CH_{3}COOH{\xrightarrow[{}]{Cl_{2}}}ClCH_{2}COOH{\xrightarrow[{}]{NH_{3}}}H_{2}NCH_{2}COOH}}}

Соединения

Глицин, как кислота, с ионами металлов образует сложные соли (глицинаты или хелаты)[2], Глицинат натрия, Глицинат железа, Глицинат меди, Глицинат цинка, Глицинат марганца и др.[3]

Биологическая роль

Глицин входит в состав многих белков и биологически активных соединений. Из глицина в живых клетках синтезируются порфирины и пуриновые основания.

Глицин также является нейромедиаторной аминокислотой, проявляющей двоякое действие. Глициновые рецепторы имеются во многих участках головного мозга и спинного мозга. Связываясь с рецепторами (кодируемые генами GLRA1, GLRA2, GLRA3 и GLRB), глицин вызывает «тормозящее» воздействие на нейроны, уменьшает выделение из нейронов «возбуждающих» аминокислот, таких, как глутаминовая кислота, и повышает выделение ГАМК. Также глицин связывается со специфическими участками NMDA-рецепторов и, таким образом, способствует передаче сигнала от возбуждающих нейротрансмиттеров глутамата и аспартата.[4]

Биосинтез в головном мозге

Поскольку глицин является нейромедиатором в центральной нервной системе (ЦНС), его содержание в нейронах строго регулируется. Глицин, наряду с другими небольшими нейтральными аминокислотами, такими как аланин, пролин, серин и гамма-аминомасляная кислота (ГАМК), не проникает через гематоэнцефалический барьер: пассивная диффузия невозможна из-за их полярности, переносчики для различных вариантов активного или облегченного транспорта отсутствуют. Небольшие нейтральные аминокислоты, включая глицин, являющиеся заменимыми, переносятся аланин-предпочитающим белком-переносчиком (A-типа). Белок-переносчик A-типа отсутствует на поверхности эндотелиоцитов гематоэнцефалического барьера со стороны просвета кровеносного сосуда, т. е. механизм активного транспорта глицина сквозь гематоэнцефалический барьер в нейроны отсутствует. В противоположность этому белок-переносчик A-типа располагается на мембране эндотелиоцита со стороны нейронов, принимая глицин и другие небольшие нейтральные аминокислоты со стороны нейронов и перенося их внутрь эндотелиоцита и далее в кровь[5]. Такие системы переносчиков активно участвуют в регулировании концентрации аминокислот в межклеточной жидкости и особенно важны для поддержания низких концентраций аминокислот-нейромедиаторов, таких как глутамат, аспарат и глицин[6]. Для использования в качестве медиатора и для синтеза белка нейроны используют глицин, синтезируемый астроцитами из серина путем деметилирования последнего. Реакция катализируется серингидроксиметилтрансферазой, коферментом которой является тетрагидрофолат, акцептирующий метиленоксидную группу серина. Поскольку серин также практически не проникает из кровеносного русла через гематоэнцефалический барьер, он синтезируется de novo из 3-фосфоглицерата, являющегося предшественником фосфоенолпирувата в гликолитическом цикле, т. е. в большом количестве присутствующем в клетках, включая астроциты[7].

В медицине

Производители фармакологических препаратов глицина заявляют, что глицин оказывает успокаивающее, слабое противотревожное и антидепрессивное действие, ослабляет выраженность побочных эффектов антипсихотических средств (нейролептиков), снотворных и противосудорожных средств, включён в ряд терапевтических практик по снижению алкогольной, опиатной и других видов абстиненции как вспомогательный препарат, оказывающий слабовыраженное седативное и транквилизирующее действие. Обладает некоторыми ноотропными свойствами, улучшает память и ассоциативные процессы. Таблетки глицин имеют белый цвет, выпускаются в виде плоскоцилиндрических капсул с фаской.[8]

Глицин является регулятором обмена веществ, нормализует и активирует процессы защитного торможения в центральной нервной системе, уменьшает психоэмоциональное напряжение, повышает умственную работоспособность.

Глицин содержится в значительных количествах в церебролизине (1,65-1,80 мг/мл)[4].

В фармацевтической индустрии таблетки глицина иногда комбинируют с витаминами (B1, B6, B12[9] или D3 в Глицин D3).

Лекарственные препараты глицина выпускаются в виде подъязычных таблеток. Одна таблетка содержит действующее вещество глицин микрокапсулированный – 100 мг и вспомогательные компоненты: водорастворимая метилцеллюлоза – 1 мг, магния стеарат – 1 мг. Контурные ячейковые блистеры (10, 50 штук) расфасованы в картонные упаковки.

Исследования

Проводившиеся исследования показали эффективность глицина в терапии тревоги и эмоциональной лабильности, он эффективен в отношении когнитивного компонента дисциркуляторной энцефалопатии, клиническому эффекту в отношении СБН[10]. Глицин также оказался эффективен при исследованиях экспериментальной модели острой ишемии миокарда[11]

Критика

Глицин, поступающий с пищей или в составе принимаемых внутрь лекарственных препаратов, не проникает через гематоэнцефалический барьер и синтезируется в ЦНС заново, чтобы обеспечить строгое регулирование его содержания в нейронах (см. выше "Биологическая роль"). По мнению психиатра Владимира Пикиреня, сама по себе аминокислота действительно участвует в передаче импульсов между нервными клетками, однако из желудочно-кишечного тракта в центральную нервную систему она попасть не может из-за того, что ЦНС защищена плотной оболочкой.[12][13]

Применение в урологии

1,5%-й раствор глицина для орошения, USP (фармакопея США) — стерильный, непирогенный, гипотонический водный раствор глицина, предназначенный только для урологического орошения во время трансуретральных хирургических процедур[14].

В пищевой промышленности

В пищевой промышленности зарегистрирован в качестве пищевой добавки E640 и его натриевые соли Е64Х. Разрешена в России.[15]

Нахождение вне Земли

Глицин был обнаружен на комете 81P/Вильда (Wild 2) в рамках распределённого проекта [email protected][16][17]. Проект направлен на анализ данных от научного корабля Стардаст («Звёздная пыль»). Одной из его задач было проникнуть в хвост кометы 81P/Вильда (Wild 2) и собрать образцы вещества — так называемой межзвёздной пыли, которая представляет собой древнейший материал, оставшийся неизменным со времён образования Солнечной системы 4,5 млрд лет назад[18].

15 января 2006 года после семи лет путешествия космический корабль вернулся назад и сбросил на Землю капсулу с образцами звёздной пыли. В этих образцах были найдены следы глицина. Вещество явно имеет неземное происхождение, потому что в нём гораздо больше изотопа C¹³, чем в земном глицине[19].

В мае 2016 года учёными обнародованы данные об обнаружении глицина в облаке газа вокруг кометы 67P/Чурюмова—Герасименко[20].

См. также

Примечания

  1. ↑ http://prowl.rockefeller.edu/aainfo/solub.htm
  2. ↑ Разработка рационального способа получения комплексных солей марганца, железа с глицином и метионином
  3. ↑ Описание — Органические микроэлементы — Глицинаты B — Traxim 2C Архивная копия от 3 сентября 2016 на Wayback Machine
  4. 1 2 Молекулярные механизмы воздействия аминокислот в составе церебролизина на нейротрансмиссию. Нейротрофические и нейропротективные эффекты аминокислот (недоступная ссылка с 16-11-2017 [751 день)] Архивная копия от 22 мая 2013 на Wayback Machine
  5. Pramod Dash. Chapter 11: Blood Brain Barrier and Cerebral Metabolism (англ.). Neuroscience Online, the Open-Access Neuroscience Electronic Textbook. McGovern Medical School at UTHealth (2019). Дата обращения 28 июля 2019.
  6. Hawkins Richard A., O'Kane Robyn L., Simpson Ian A., Viña Juan R. Structure of the Blood–Brain Barrier and Its Role in the Transport of Amino Acids (англ.). The Journal of Nutrition. Oxford Academic (January 2006). Дата обращения 28 июля 2019.
  7. Furuya Shigeki. An essential role for de novo biosynthesis of L-serine in CNS development (англ.). The Asia Pacific Journal of Clinical Nutrition. Asia Pacific Journal of Clinical Nutrition (2008). Дата обращения 28 июля 2019.
  8. ↑ Таблетки «Глицин»: инструкция, показания, цены и отзывы (рус.). Таблетки «Глицин». Дата обращения 10 ноября 2018.
  9. ↑ Справочник лекарственных средств (неопр.) (недоступная ссылка). Дата обращения 22 ноября 2017. Архивировано 21 декабря 2016 года.
  10. ↑ https://medprosvita.com.ua/sravnitelnyjj-analiz-terapevtichesko/
  11. ↑ http://rep.bsmu.by/handle/BSMU/1456
  12. ↑ Валерьянка, глицин и эхинацея - бездействующие лекарства или фуфломицины (неопр.). Refnews. Дата обращения 20 июня 2019.
  13. Дмитрий Корсак. Психиатр Владимир Пикиреня: фуфломицины, которые вы употребляете - Люди Onliner (рус.). Onliner (18 декабря 2018). Дата обращения 20 июня 2019.
  14. ↑ Glycine - FDA prescribing information, side effects and uses (англ.), Drugs.com. Дата обращения 31 марта 2018.
  15. ↑ http://pomni.info/files/2.3.2.1293-03.rtf
  16. Don Brownlee. Stardust: A Mission With Many Scientific Surprises (англ.) (29-10-2009). Дата обращения 11 ноября 2011. Архивировано 2 февраля 2012 года.
  17. ↑ Stardust Mission (англ.). NASA. Дата обращения 11 ноября 2011. Архивировано 2 февраля 2012 года.
  18. ↑ Лента.ру: Прогресс: В хвосте кометы впервые обнаружили аминокислоту
  19. ↑ NASA Researchers Make First Discovery of Life’s Building Block in Comet
  20. ↑ На комете 67P/Чурюмова—Герасименко нашли кусочек жизни по Энгельсу (неопр.). nplus1.ru. Дата обращения 31 мая 2016.

wiki.monavista.ru

Глицин: часть 1. Мал да удал: глицин в живой природе

Эта статья о глицине — самой маленькой аминокислоте в природе, чья роль, тем не менее, огромна. Вы узнаете, в состав каких белков и пептидов входит глицин, как синтезируется в организме и предшественником каких веществ является.

Введение в курс дела

Аминокислоты — это одни из самых важных веществ в живой природе. Будучи довольно небольшими молекулами, они играют огромную роль в живых организмах. Подобно жемчужинам в ожерелье, они слагают большие молекулы — белки, из которых построены все живые существа — от мала до велика. Функция аминокислот не исчерпывается только тем, что они становятся строительным материалом для белков. Аминокислоты могут специализироваться на других задачах. Общая формула аминокислот приведена на рисунке 1.

Рисунок 1. Структура аминокислот. а — Общая формула α-аминоксилот. Компонентами этих соединений являются углеродный скелет, карбоксильная и аминогруппы, а также боковая группа, определяющая индивидуальные свойства разных аминокислот. Важно, что почти во всех природных аминокислотах аминогруппа расположена слева от углеродного скелета (L-изомеры). α-L-аминокислоты — основа природных белков. б — Формула глицина. Боковая группа в этой молекуле представлена протоном. Таким образом, глицин — самая простая аминокислота из всех возможных.

Эта статья посвящена глицину — самой маленькой из всех теоретически возможных аминокислот. Но, несмотря на свою крохотную боковую группу, представленную одним протоном, глицин — неотъемлемый компонент белков и участник нескольких важных процессов. Поговорка «мал, да удал» — это про глицин!

В первой части статьи мы рассмотрим некоторые белки и пептиды, для которых глицин имеет большое значение, а также разберем, откуда глицин в организме вообще берется и в чем, кроме белков, используется. Мы не будем претендовать на абсолютную полноту картины функций глицина, но остановимся на наиболее важных моментах.

Глицин в белках и пептидах

Глицин — вещество не редкое. Почти ни один белок не обходится без него. В среднем глицин составляет чуть больше 7% аминокислотных остатков («жемчужин») в белках [1]. При этом давайте учтем, что разнообразие белковых аминокислот довольно велико, поэтому названная цифра — почти рекорд! А уж где глицина действительно много — так это в коллагене.

Коллаген — сложно устроенный белок, являющийся одним из основных компонентов соединительной ткани. Он присутствует в сухожилиях, коже, кровеносных сосудах, роговице, костях и хрящах, а также в чешуе рыб и шерсти млекопитающих, выполняя структурную роль и составляя до 30% массы позвоночных животных [2]. Таким образом, это один из самых распространенных животных белков. Существует несколько типов коллагена.

Коллаген обеспечивает прочность соединительных тканей, а потому и сам обладает свойством устойчивости к растяжению, и это качество определяется его структурой (рис. 2) [2].

Рисунок 2. Структура коллагена. Три обвивающие друг друга нити образуют суперспираль, как пряди волос — косу. Суперспирали, располагаясь друг относительно друга строго определенным образом, формируют фибриллу. Такое устройство белка способствует его механической устойчивости: кости ломаться не должны.

Но причем же тут глицин? Дело в том, что полипептидные нити молекул коллагена, как орнамент, состоят из повторяющегося «узора» — паттерна из трех аминокислотных остатков: Gly—Pro—X и Gly—X—Hyp [3]. Здесь Gly — глицин, Pro — пролин, Hyp — 4-гидроксипролин, X — другая аминокислота.

Из этой формулы видно, что глицин составляет треть аминокислот коллагена! Природа не стала бы играть такими цифрами просто забавы ради. Присутствие глицина — одна из предпосылок к формированию прочных фибрилл и волокон коллагена, необходимых для многих тканей. Три нити, формирующие коллагеновую суперспираль, переплетаются настолько плотно, что между ними нет свободного пространства. И только лишь один глицин со своей крохотной боковой группой способен интегрироваться в эту систему, как кусочек мозаики. Замена глицина на какую-то другую аминокислоту, имеющую более объемную боковую группу (например, серин), может привести к серьезным патологиям, например, к синдрому Элерса—Данлоса (это гетерогенная группа наследственных нарушений соединительной ткани) [4], [5].

Глицином богат еще один структурный белок — фиброин — основной компонент паутины и шелка. Почти половина аминокислотных остатков фиброина — глицин! Как и в случае с коллагеном, там он входит в состав повторяющейся последовательности.

Белкам близка еще одна группа биологических веществ — пептиды. Они тоже сложены из аминокислот, только меньше белков по размерам (но граница между белками и пептидами размыта).

Рисунок 3. Pyrrhocoris apterus. Это известный многим клоп-солдатик — яркий (во всех смыслах этого слова) представитель отряда полужесткокрылые, или клопы (Hemiptera). При внедрении бактерий в его гемолимфе обнаруживаются несколько антимикробных пептидов, включая богатый глицином гемиптерицин [8]. Не только он, но и многие другие животные борются с патогенами с помощью глицин-богатых пептидов.

Посмотрим на так называемые антимикробные пептиды. Это, как правило, положительно заряженные (катионные) молекулы, которые участвуют в иммунном ответе, воздействуя на мембраны бактерий или других патогенов [6]. С помощью этих относительно небольших молекул человек и другие животные, включая разнообразных букашек, борются с болезнетворными организмами, которым удалось пробраться во внутреннюю среду. До сих пор не разработано единой классификации антимикробных пептидов, но известно, что те или иные из них характеризуются определенными структурными особенностями. В частности, в них может в большом количестве присутствовать какая-то аминокислота, в том числе и глицин.

К глицин-богатым антимикробным пептидам относят акалолептины из гемолимфы жука-дровосека Acalolepta luxuriosa, акантоскуррин из гемоцитов паука Acanthoscurria gomesiana, аттацины из насекомых отрядов чешуекрылые и двукрылые, гемиптерицин из известного многим клопа-солдатика Pyrrhocoris apterus (рис. 3) и другие (гименоптецин, гловерины, колеоптерицины, риноцерозин, холотрицин-2 и −3). Глицин-богатые домены имеют пептиды гиастатин и крустины [7], [8].

Конечно, глицин присутствует и во многих других белках и пептидах. Это делает его одной из самых распространенных природных аминокислот.

Откуда берется глицин в организме?

Конечно, эта чудесная аминокислота попадает к нам с пищей в составе белков. Тем не менее основной источник глицина — процессы синтеза, проходящие в нашем теле, что позволяет отнести глицин к заменимым аминокислотам.

Главный его предшественник — серин. Это тоже аминокислота, только в ее молекуле на один атом углерода больше. Что же с ним сделать? Здесь природа идет по проторенной дорожке: она передает его на вещество-кофермент тетрагидрофолат, который «любит» одноуглеродные фрагменты. В результате реакции на свет рождается глицин (рис. 4).

Рисунок 4. Синтез глицина из 3-фосфоглицерата через серин. Цифрами обозначены ферменты: 1 — фосфоглицератдегидрогеназа; 2 — фосфосеринаминотрансфераза; 3 — фосфосеринфосфатаза; 4 — серин-гидроксиметилтрансфераза.

У позвоночных животных, включая и нас любимых, есть еще один любопытный способ произвести глицин. Исходными веществами в реакции, катализируемой ферментом глицинсинтазой, являются довольно простые вещества — углекислый газ и аммиак (в виде иона). Эта реакция тоже не обходится без уже известного нам «любителя» одноуглеродных фрагментов:

CO2 + NH4+ + N5,N10-метилентетрагидрофолат + NADH + H+ = глицин + тетрагидрофолат + NAD+

Voilà! (Извините за мой французский.) Образовавшийся глицин поступает на службу организму.

Гиперактивация серинглицинового биосинтетического пути способна привести к развитию рака, ведь этот путь важен для получения большого количества «строительных» веществ (нуклеиновых кислот, белков, липидов), которые так необходимы активно делящимся раковым клеткам. Антифолатная химиотерапия широко используется в лечении рака [9].

Глицин — предшественник гема

Почему кровь красная? Потому что в ней есть гемоглобин — красный белок, имеющий в своем составе гем. Это железосодержащая порфириновая система, на которую и садится кислород, от легких с кровью поступающий к разным тканям. Глицин является одним из предшественников гема у животных. Реакция с участием глицина представлена на рисунке 5.

Рисунок 5. Роль глицина в синтезе гема. а — Эритроциты («красные кровяные тельца») — клетки, содержащие красный белок гемоглобин. б — Цвет гемоглобина, а также его транспортная функция обеспечиваются присутствием гема. в — Синтез дельта-аминолевулиновой кислоты из сукцинил-КоА и глицина — первая реакция в синтезе порфириновых систем у животных.

Синтез порфиринов — отдельная большая «опера», причем глицин участвует только в первой «арии», и в этой статье мы не будем изучать полную «партитуру». Тем не менее роль глицина в этом фундаментальном процессе огромна.

Глицин как участник других жизненно важных реакций

Что такое ДНК? Правильно! Химический субстрат наследственности. Это знают все. Но не все знают, что каждая из цепей ДНК состоит из «кирпичиков», называемых нуклеотидами. Каждый нуклеотид включает в себя, помимо прочего, азотистое основание. Азотистые основания ДНК бывают двух типов — пуриновые (аденин и гуанин) и пиримидиновые (тимин и цитозин). Глицин принимает участие в синтезе нуклеотидов с пуриновыми основаниями (рис. 6).

Рисунок 6. ДНК и схема пуринового азотистого основания. а — Модель знаменитой «двойной спирали», на которой хорошо видны «кирпичики» (нуклеотиды), формирующие ка

biomolecula.ru

Аминокислоты | CHEMEGE.RU

 

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы –NH2.

Природные аминокислоты можно разделить на следующие основные группы:

1) Алифатические предельные аминокислоты (глицин, аланин)NH2-CH2-COOH глицин

NH2-CH(CH3)-COOH аланин

2) Серосодержащие аминокислоты (цистеин)

цистеин

3) Аминокислоты с алифатической гидроксильной группой (серин)NH2-CH(CH2OH)-COOH серин
4) Ароматические аминокислоты (фенилаланин, тирозин)

фенилаланин

тирозин

5) Аминокислоты с двумя карбоксильными группами (глутаминовая кислота)HOOC-CH(NH2)-CH2-CH2-COOH

глутаминовая кислота

6) Аминокислоты с двумя аминогруппами (лизин)CH2(NH2)-CH2-CH2-CH2-CH(NH2)-COOH

лизин

 

 

  • Для природных α-аминокислот R-CH(NH2)COOH применяются тривиальные названия: глицин, аланин, серин и т. д.

 

  • По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе:

 

2 – Аминобутановая кислота3-Аминобутановая кислота
  • Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

 

α-Аминомасляная кислотаβ-Аминомасляная кислота

 

 

 

Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы хорошо проводят электрический ток.

 

  • Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:

 

  • Восстановление нитрозамещенных карбоновых кислот (применяется для получения ароматических аминокислот):

 

 

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион:

 

 

1. Кислотно-основные свойства аминокислот

 

 Аминокислоты — это амфотерные соединения.

 

Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами.

 

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп.

 

Так, глутаминовая кислота образует кислый раствор (две группы -СООН, одна -NH2), лизин — щелочной (одна группа -СООН, две -NH2).

 

1.1. Взаимодействие с металлами и щелочами

Как кислоты (по карбоксильной группе), аминокислоты могут реагировать с металлами, щелочами, образуя соли:

 

1.2. Взаимодействие с основаниями

По аминогруппе аминокислоты реагируют с основаниями:

 

2. Взаимодействие с азотистой кислотой

Аминокислоты способны реагировать с азотистой кислотой.

 

Например, глицин взаимодействует с азотистой кислотой:

 

3. Взаимодействие с азотистой кислотой

Аминокислоты способны реагировать с аминами, образуя соли или амиды.

 

4. Этерификация

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир:

 

Например, глицин взаимодействует с этиловым спиртом:

 

 

 

5. Декарбоксилирование

Протекает при нагревании аминокислот с щелочами или при нагревании.

 

Например, глицин взаимодействует с гидроксидом бария при нагревании:

 

Например, глицин разлагается при нагревании:

 

 

6. Межмолекулярное взаимодействие аминокислот

 При взаимодействии аминокислот образуются пептиды.  При взаимодействии двух α-аминокислот образуется дипептид.

 

Например, глицин реагирует с аланином с образованием дипептида (глицилаланин):

 

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Поделиться ссылкой:

chemege.ru

Аминокислоты — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 февраля 2019; проверки требуют 48 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 февраля 2019; проверки требуют 48 правок.

Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот — это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде). [1] Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

Большинство из около 500 известных аминокислот были открыты после 1953 года, например во время поиска новых антибиотиков в среде микроорганизмов, грибов, семян, растений, фруктов и жидкостях животных. Примерно 240 из них встречается в природе в свободном виде, а остальные только как промежуточные элементы обмена веществ.[1]

Открытие аминокислот в составе белков[править | править код]

Аминокислота Аббревиатура Год Источник Впервые выделен[2]
Глицин Gly, G 1820 Желатин А. Браконно
Лейцин Leu, L 1820 Мышечные волокна А. Браконно
Тирозин Tyr, Y 1848 Казеин Ю. фон Либих
Серин Ser, S 1865 Шёлк Э. Крамер
Глутаминовая кислота Glu, E 1866 Растительные белки Г. Риттхаузен[de]
Глутамин Gln, Q
Аспарагиновая кислота Asp, D 1868 Конглутин, легумин (ростки спаржи) Г. Риттхаузен[en]
Аспарагин Asn, N 1806 Сок спаржи Л.-Н. Воклен и П. Ж. Робике
Фенилаланин Phe, F 1881 Ростки люпина Э. Шульце, Й. Барбьери
Аланин Ala, A 1888 Фиброин шёлка А. Штреккер, Т. Вейль
Лизин Lys, K 1889 Казеин Э. Дрексель
Аргинин Arg, R 1895 Вещество рога С. Гедин
Гистидин His, H 1896 Стурин, гистоны А. Коссель[3], С. Гедин
Цистеин Cys, C 1899 Вещество рога К. Мёрнер
Валин Val, V 1901 Казеин Э. Фишер
Пролин Pro, P 1901 Казеин Э. Фишер
Гидроксипролин Hyp, hP 1902 Желатин Э. Фишер
Триптофан Trp, W 1902 Казеин Ф. Хопкинс, Д. Кол
Изолейцин Ile, I 1904 Фибрин Ф. Эрлих
Метионин Met, M 1922 Казеин Д. Мёллер
Треонин Thr, T 1925 Белки овса С. Шрайвер и другие
Гидроксилизин Hyl, hK 1925 Белки рыб С. Шрайвер и другие

Жирным шрифтом выделены незаменимые аминокислоты.

По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений. Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной.

Все аминокислоты — амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы  —COOH, так и основные свойства, обусловленные аминогруппой  —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2 —CH2 —COOH + HCl HCl • NH2 —CH2 —COOH (Хлороводородная соль глицина)
NH2 —CH2 —COOH + NaOH H2O + NH2 —CH2 —COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, то есть находятся в состоянии внутренних солей.

NH2 —CH2COOH N+H3 —CH2COO-

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH2 —CH2 —COOH + CH3OH H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона,

ru.wikipedia.org

химические свойства, польза для организма

Ноотропные препараты

Глицин — это аминокислота, которая была преобразована для выпуска в аптечной в форме. Имеет очень большой спектр действия в организме человека, но чаще всего ее используют для восстановления и регуляции психоэмоционального состояния человека. Данный препарат продается в каждой аптеке, стоит относительно недорого и отпускается без рецепта врача, но это не значит, что его можно употреблять когда и как захочется, ведь польза от препарата глицина будет только при соблюдении определенных правил.

1

Глицин — что это за вещество

Выпускается в таблетках и капсулах, которые следует рассасывать, имеет сладковатый привкус, иногда может иметь горькое послевкусие. В одной таблетке содержится около 100 мг аминоуксусной кислоты и некоторые вспомогательные вещества: водорастворимая метилцеллюлоза и стеариновая кислота.

Химические свойства этой кислоты таковы: она синтезируется в организме человека из карбоновых кислот и аммиака, который выделяется как конечный продукт обмена жизнедеятельности; может взаимодействовать с тяжелыми металлами, поступаемыми в организм из питьевой воды или окружающей среды. Из физических свойств глицина можно назвать то, что он является нейромедиаторным гормонов, т. е. тормозит действие нервных синапсов.

Глицин получил свое название из-за сладкого вкуса, ведь с греческого glycys переводится как «сладкий, сахарный».

Получение этой аминокислоты в лаборатории не вызывает никаких трудностей. Не так давно научились синтезировать искусственный глицин. Производители фармакологических средств, получая аминоуксусную кислоту и производя из нее лекарственные вещества, заявляют, что эти препараты относятся к седативным транквилизирующим антидепрессантам, которые уменьшают чувство страха, тревоги, психоэмоционального напряжение.

Глицин при беременности: инструкция по применению, приём препарата на ранних и поздних сроках

2

Аминоуксусная кислота в медицине

В медицине применяется в качестве ноотропного лекарственного средства, то есть средства, оказывающего специфическое воздействие на высшие психические функции мозга и защищающего его от негативного воздействия со стороны окружающей среды.

Препарат активно используется в лечении многих заболеваний различных систем органов, но следует учесть, что он оказывает не только положительное влияние на организм, но и негативное, если пренебрегать правилами употребления.

Полезные свойства:

  • нормализация обменных процессов в организме;
  • устранение психического напряжения;
  • ускорение работы нейронных синапсов;
  • уменьшает риск кровоизлияния в мозг;
  • помогает сгладить негативные эмоции по отношению к окружающему миру и людям;
  • улучшение работы мозга, повышение концентрации на поставленных заданиях и увеличение трудоспособности;
  • снижает риск заболеваний вегето-сосудистой системы;
  • уменьшение утомляемости;
  • улучшение настроения, ликвидация раздражимости и тревоги;
  • нормализация сна, проходит сонливость и вялость в дневное время суток;
  • снижение токсического влияние на организм различных ядов и алкоголя.

Несмотря на множество плюсов, глицин следует употреблять только после консультации с врачом. Ведь неправильное применение этого препарата сможет привести к таким симптомам, как тошнота, рвота, нарушение функционирования желудочно-кишечного тракта, сонливость и головокружение, сыпь на коже, проблемы с произведение дыханием. Вред глицин приносит только при несоблюдении правильной дозировки и в комплексном употреблении с несовместимыми препаратами. Для того чтобы не допустить негативного воздействия на организм, рекомендуется проконсультироваться с врачом перед применением.

Инструкция по применению препарата Цераксон

3

Показания к применению

Глицин оказывает комплексное действие на нервную и сердечно-сосудистую систему, выделяют следующие показания к применению:

  • бессонница;
  • ухудшение памяти;
  • восстановление после операций;
  • стрессы и психологические нагрузки;
  • нейроинфекция;
  • инсульт;
  • ишемические болезни;
  • гипертензия;
  • падение работоспособности;
  • отклонение в поведении ребенка.

Основная функция аминоуксусной кислоты — стабилизация психической деятельности человека. Устраняется нервное перенапряжение, нормализуется нервная деятельность организма. Польза глицина проявляется в его успокаивающем, сосудорасширяющем, стрессоподавляющем воздействии, кроме того еще и нормализует психическое состояние детей, повышает работоспособность и не позволяет развиваться переутомлению.

Передозировка глицина: симптомы и лечение побочных эффектов препарата

4

Правила применения

Суточная норма глицина для человека составляет 3-7 мг, из них 1,5 мг человек получает при полноценном питании, а 3 мг синтезируется в организме. Недостаток глицина в организме сможет приводить к судорогам в мышцах, головокружение, тошнота, вялость, слабость, апатия, раздражение, плаксивость, нарушение сна. Поэтому при нехватке аминоуксусной кислоты врачи рекомендуют принимать препарат три раза в день: одну таблетку под язык для взрослого, а детям — полтаблетки под язык два раза в день. Принимать следует на протяжении 3-4 недель. При лечении дозировку и сроки назначает терапевт.

Побочных или отрицательных влияний ученые не выявили, так как эта аминокислота входит в состав тканей организма. Единственное противопоказание к применению — аллергическая реакция. Она сможет развиваться и на естественные для организма вещества. Встречается крайне редко и протекает со следующими симптомами: зуд, сыпь на лице, отек Квинке, крапивница, анафилактический шок. При обнаружении перечисленных симптомов употребление глицина следует немедленно прекратить. Ведь каждое последующее употребление препарата будет усугублять протекание аллергической реакции.

Следует проявлять осторожность в приеме БАД, в состав которых входит свободный глицин. Ведь чрезмерное употребление глицина приводит к головной боли и падению артериального давления. Взаимодействие с более концентрированными препаратами может привести к коме.

Если через неделю побочный эффект не пройдет, то рекомендуется немедленно обратиться к лечащему врачу.

neurofob.com

Глицин — Википедия

Глицин
Общие
Систематическое
наименование
аминоуксусная кислота
Сокращения Гли, G, Gly
GGU,GGC,GGA,GGG
Хим. формула NH2 —CH2 —COOH
Физические свойства
Молярная масса 75,07 г/моль
Плотность 1,607 г/см³
Термические свойства
Т. плав. 233 °C
290 °C
Удельная теплота испарения −528,6 Дж/кг
Удельная теплота плавления −981,1 Дж/кг
Химические свойства
pKa 2,34
9,58
Растворимость в воде хорошая, 24.99 г/100 мЛ (25 °C)[1]
растворим в пиридине, умеренно растворим в этаноле, нерастворимый в эфире
Классификация
Рег. номер CAS 56-40-6
PubChem 750
Рег. номер EINECS 200-272-2
SMILES
InChI
ChEBI 15428, 57305 и 42964
ChemSpider 730
Безопасность
ЛД50 2,6 г/кг
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Глици́н (аминоуксусная кислота, аминоэтановая кислота) — простейшая алифатическая аминокислота, единственная протеиногенная аминокислота, не имеющая оптических изомеров. Неэлектролит. Название глицина происходит от др.-греч. γλυκύς, glycys — сладкий, из-за сладковатого вкуса аминокислоты. Применяется в медицине в качестве ноотропного лекарственного средства. Глицином («глицин-фото», параоксифенилглицин) также иногда называют п-гидроксифениламиноуксусную кислоту, проявляющее вещество в фотографии.

Химические свойства

Получение

Глицин можно получить в ходе хлорирования карбоновых кислот и дальнейшем взаимодействии с аммиаком :

Ch4COOH→Cl2ClCh3COOH→Nh4h3NCh3COOH{\displaystyle {\mathsf {CH_{3}COOH{\xrightarrow[{}]{Cl_{2}}}ClCH_{2}COOH{\xrightarrow[{}]{NH_{3}}}H_{2}NCH_{2}COOH}}}

Соединения

Глицин, как кислота, с ионами металлов образует сложные соли (глиценаты или хелаты)[2], Глицинат натрия, Глицинат железа, Глицинат меди, Глицинат цинка, Глицинат марганца и др.[3]

Биологическая роль

Глицин входит в состав многих белков и биологически активных соединений. Из глицина в живых клетках синтезируются порфирины и пуриновые основания.

Глицин также является нейромедиаторной аминокислотой, проявляющей двоякое действие. Глициновые рецепторы имеются во многих участках головного мозга и спинного мозга. Связываясь с рецепторами (кодируемые генами GLRA1, GLRA2, GLRA3 и GLRB), глицин вызывает «тормозящее» воздействие на нейроны, уменьшает выделение из нейронов «возбуждающих» аминокислот, таких, как глутаминовая кислота, и повышает выделение ГАМК. Также глицин связывается со специфическими участками NMDA-рецепторов и, таким образом, способствует передаче сигнала от возбуждающих нейротрансмиттеров глутамата и аспартата.[4] В спинном мозге глицин приводит к торможению мотонейронов, что позволяет использовать глицин в неврологической практике для устранения повышенного мышечного тонуса[источник не указан 595 дней].

В медицине

Всемирная организация здравоохранения не располагает данными о доказанной эффективности или клинической значимости употребления глицина в любой форме, кроме раствора для промывания в урологии.[источник не указан 77 дней]

Производители же фармакологических препаратов глицина заявляют, что глицин оказывает успокаивающее, слабое противотревожное и антидепрессивное действие, ослабляет выраженность побочных эффектов антипсихотических средств (нейролептиков), снотворных и противосудорожных средств, включён в ряд терапевтических практик по снижению алкогольной, опиатной и других видов абстиненции как вспомогательный препарат, оказывающий слабовыраженное седативное и транквилизирующее действие. Обладает некоторыми ноотропными свойствами, улучшает память и ассоциативные процессы.

Глицин является регулятором обмена веществ, нормализует и активирует процессы защитного торможения в центральной нервной системе, уменьшает психоэмоциональное напряжение, повышает умственную работоспособность.

Глицин содержится в значительных количествах в церебролизине (1,65-1,80 мг/мл)[4].

В фармацевтической индустрии таблетки глицина иногда комбинируют с витаминами (B1, B6, B12[5] или D3 в Глицин D3).

Лекарственные препараты глицина выпускаются в виде подъязычных таблеток. Таблетки имеют белый цвет, выпускаются в виде плоскоцилиндрических капсул с фаской. Одна таблетка содержит действующее вещество глицин микрокапсулированный – 100 мг и вспомогательные компоненты: водорастворимая метилцеллюлоза – 1 мг, магния стеарат – 1 мг. Контурные ячейковые блистеры (10, 50 штук) расфасованы в картонные упаковки.

Применение в урологии

1,5 % раствор глицина для орошения, USP (фармокопея США) — стерильный, непирогенный, гипотонический водный раствор глицина, предназначенный только для урологического орошения во время трансуретральных хирургических процедур[6].

В пищевой промышленности

В пищевой промышленности зарегистрирован в качестве пищевой добавки E640 и его натриевые соли Е64Х. Разрешена в России.[7]

Нахождение вне Земли

Глицин был обнаружен на комете 81P/Вильда (Wild 2) в рамках распределённого проекта [email protected][8][9]. Проект направлен на анализ данных от научного корабля Стардаст («Звёздная пыль»). Одной из его задач было проникнуть в хвост кометы 81P/Вильда (Wild 2) и собрать образцы вещества — так называемой межзвёздной пыли, которая представляет собой древнейший материал, оставшийся неизменным со времён образования Солнечной системы 4,5 млрд лет назад[10].

15 января 2006 года после семи лет путешествия космический корабль вернулся назад и сбросил на Землю капсулу с образцами звёздной пыли. В этих образцах были найдены следы глицина. Вещество явно имеет неземное происхождение, потому что в нём гораздо больше изотопа C¹³, чем в земном глицине[11].

В мае 2016 года учёными обнародованы данные об обнаружении глицина в облаке газа вокруг кометы 67P/Чурюмова—Герасименко[12].

См. также

Примечания

wikipedia.green

Глицин. Мини-справочник по химическим веществам (3340 веществ)


Алф. указатель: 1-9 A-Z А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Щ Э Я


Синонимы:

аминоуксусная кислота
гликокол

Внешний вид:

бесцветн. моноклинные кристаллы

Брутто-формула (система Хилла): C2H5NO2

Формула в виде текста: h3NCh3COOH

Молекулярная масса (в а.е.м.): 75,07

Температура плавления (в °C): 262

Температура разложения (в °C): 262

Растворимость (в г/100 г или характеристика):

ацетон: мало растворим
вода: 25,3 (25°C)
вода: 57,5 (75°C)
диэтиловый эфир: не растворим
пиридин: мало растворим
этанол: 0,043 (25°C)

Метод получения 1.

(лабораторный синтез)
Источник информации: "Синтезы органических препаратов" сб.1 М.1949 стр. 167-168

К кипящей суспензии 253 г (0,8 мол.) гидроокиси бария (восьмиводной) в 500 мл воды, находящейся в литровом стакане, добавляют частями 61,6 г (0,4 мол.) кислой сернокислой соли аминоацетонитрила с такой скоростью, чтобы реакционная масса не пенилась чересчур быстро и не вылезала из стакана. Затем на стакан ставят литровую круглодонную колбу, через которую пропускают холодную водопроводную воду, и содержимое стакана кипятят до тех пор, пока не прекратится выделение аммиака; на это требуется 6—8 час. Барий количественно осаждают добавлением точно рассчитанного количества 50%-ной серной кислоты (примечание). Фильтрат упаривают на водяной бане до объема 50—75 мл; по охлаждении выпадают кристаллы сырого глицина, который отфильтровывают. Фильтрат вновь упаривают, охлаждают и вновь отфильтровывают кристаллы. Этот процесс повторяют до тех пор, пока объем фильтрата не составит 5 мл. Выход полученного таким образом неочищенного глицина составляет 25—27 г. Его подвергают систематической перекристаллизации из воды, обесцвечивая раствор животным углем; при этом получается продукт, плавящийся с разложением при 246° (исправл.) или выше. Промывка всех последующих порций кристаллов 50%-ным этиловым спиртом чрезвычайно способствует освобождению кристаллов от маточника.

Выход чистого глицина: 20—26 г (67 — 87% теоретич.).

Примечание:

Полезно добавлять небольшой избыток серной кислоты,нагревать на водяной бане с тем, чтобы осадок легко фильтровался и, наконец, завершать операцию добавлением разбавленного раствора гидроокиси бария до тех пор, пока не прекратится выпадение осадка. Операцию можно закончить также добавлением небольшого избытка гидроокиси бария, который удаляют добавкой к кипящему раствору углекислого аммония.

Метод получения 2.

(лабораторный синтез)
Источник информации: "Синтезы органических препаратов" сб.1 М.1949 стр. 168-169

В 12-литровую круглодонную колбу помещают 8 л (120 мол.) водного аммиака (уд. вес 0,90) и при- работающей мешалке постепенно добавляют 189 г (2 мол.) монохлоруксусной кислоты. Раствор перемешивают до полного растворения хлоруксусной кислоты и затем оставляют его на 24 часа при комнатной температуре. Бесцветный или слегка желтый раствор упаривают на водяной бане в вакууме (примечание 1) до объема около 200 мл.

Концентрированный раствор глицина и хлористого аммония переносят в 2-литровый стакан, колбу ополаскивают небольшим количеством воды, которую добавляют к главной порции. Добавлением воды объем раствора доводят до 250 мл и глицин осаждают постепенным добавлением 1500 мл метилового спирта (примечание 2),

При прибавлении метилового спирта раствор хорошо перемешивают, после чего его охлаждают в холодильном шкафу в течение 4—6 час. для завершения кристаллизации: Затем раствор фильтруют и кристаллы глицина промывают, взмутив их предварительно в 500 мл 95%-ного метилового спирта. Кристаллы вновь отсасывают и промывают сперва небольшим количеством метилового спирта, а затем эфиром. После сушки на воздухе выход глицина составляет 108— 112 г.

Продукт содержит небольшое количество хлористого аммония. С целью очистки его растворяют при нагревании в 200 — 215 мл воды и раствор взбалтывают с 10 г пермутита (примечание 3), после чего его фильтруют. Глицин осаждают добавлением примерно 5-кратного количества (по объему; около 1250 мл) метилового спирта. Глицин собирают на воронке Бюхнера, промывают метиловым спиртом и эфиром и сушат на воздухе. Выход: 96—98 г (64—65% теоретич.) продукта, темнеющего при 237° и плавящегося с разложением при 240°. Испытание его на присутствие хлоридов, равно как и аммиачных солей (с реактивом Несслера), дает отрицательный результат.

Примечания

1. Дестиллат можно сохранять и водный аммиак применять для последующих синтезов.

2. Удовлетворительные результаты дает технический метиловый спирт.

3. В случае отсутствия пермутита с помощью третьей кристаллизации глицина из воды и метилового спирта можно получить продукт, не содержащий аммонийных солей (потери — невелики). И после второй кристаллизации, без применения пермутита, получается достаточно чистый глицин, вполне пригодный для обычной работы.

Показатель диссоциации:

pKa (1) = 9,88 (25 C, вода)

Дополнительная информация:

Изоэлектрическая точка 5,97.

    Источники информации:

  1. Рабинович В.А., Хавин З.Я. "Краткий химический справочник" Л.: Химия, 1977 стр. 141, 222
  2. Тюкавкина Н.А., Бауков Ю.И. "Биоорганическая химия" М.:Медицина, 1985 стр. 299

Алф. указатель: 1-9 A-Z А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Щ Э Я


Еще по теме:

www.xumuk.ru

Химические свойства аминокислот | Химия онлайн

Аминокислоты являются амфотерными соединениями, для них характерны кислотно-основные свойства. Это обусловлено наличием в их молекулах функциональных групп кислотного (-СООН) и основного (-NH2) характера.

Кислотно-основное равновесие в водных растворах

В водных растворах и твердом состоянии аминокислоты существуют в виде внутренних солей.

Ионизация молекул аминокислот в водных растворах зависит от кислотного или щелочного характера среды:

В кислой среде молекулы аминокислот представляю собой катион. В щелочной среде молекулы аминокислот представляют собой анион. В нейтральной среде аминокислоты представляют собой цвиттер-ион или биполярный ион.

Аминокислоты в твердом состоянии всегда существуют в виде биполярного, двухзарядного иона — цвиттер-иона.

Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток.

1. Взаимодействие внутри молекулы – образование внутренних солей (биполярных ионов)

Молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

Карбоксильная группа аминокислоты отщепляет ион водорода, который затем присоединяется к аминогруппе той же молекулы по месту неподеленной электронной пары азота. В результате действие функциональных групп нейтрализуется, образуется так называемая внутренняя соль.

Водные растворы аминокислот в зависимости от количества функциональных групп имеют нейтральную, кислую или щелочную среду.

Аминокислоты с одной карбоксильной группой и одной аминогруппой имеют нейтральную реакцию.

Видеоопыт «Свойства аминоуксусной кислоты»

а) моноаминомонокарбоновые кислоты (нейтральные кислоты)

Внутримолекулярная нейтрализация  — образуется биполярный цвиттер-ион.

Водные растворы моноаминомонокарбоновых кислот нейтральны (рН≈7).

б) моноаминодикарбоновые кислоты (кислые аминокислоты)

Водные растворы моноаминодикарбоновых кислот имеют рН<7 (кислая среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток ионов водорода Н+.

в) диаминомонокарбоновые кислоты (основные аминокислоты)

Водные растворы диаминомонокарбоновых кислот имеют рН>7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН.

2. Взаимодействие с основаниями и кислотами

Аминокислоты как амфотерные соединения образуют соли как с кислотами (по группе NH2), так и со щелочами (по группе СООН).

Как кислота (участвует карбоксильная группа)

Как карбоновые кислоты α-аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

а) взаимодействие с основаниями 

Образуются соли:

б) взаимодействие со спиртами (р. этерификации)

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир. Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

в) взаимодействие с  аммиаком 

Образуются амиды:

Как основание (участвует аминогруппа)

а) взаимодействие с сильными кислотами

Подобно аминам, аминокислоты реагируют с сильными кислотами с образованием солей аммония:

б) взаимодействие с азотистой кислотой (р. дезаминирования)

Подобно первичным аминам, аминокислоты реагируют с азотистой кислотой, при этом аминогруппа превращается в гидроксогруппу, а аминокислота – в гидроксикислоту:

Измерение объёма выделившегося азота позволяет определить количество аминокислоты (метод Ван-Слайка).

3. Внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой кислоты, в результате которого образуется ε-капролактам (полупродукт для получения капрона).

4. Межмолекулярное взаимодействие α-аминокислот – образование пептидов (р. поликонденсации)

При взаимодействии карбоксильной группы одной молекулы аминокислоты и аминогруппы другой молекулы аминокислоты образуются пептиды. При взаимодействии двух α-аминокислот образуется дипептид.

Межмолекулярная реакция с участием трех α-аминокислот приводит к образованию трипептида и т.д.

Важнейшие природные полимеры – белки (протеины) – относятся к полипептидам, т.е представляют собой продукт поликонденсации a-аминокислот.

5. Качественные реакции!

а) нингидриновая реакция

Все аминокислоты окисляются нингидрином с образованием продуктов сине-фиолетового цвета:

Иминокислота пролин дает с нингидрином  желтое окрашивание.

б) с ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.

Видеоопыт «Образование медной соли аминоуксусной кислоты»

Аминокислоты

himija-online.ru

Глицин — Википедия. Что такое Глицин

Глицин
Общие
Систематическое
наименование
аминоуксусная кислота
Сокращения Гли, G, Gly
GGU,GGC,GGA,GGG
Хим. формула NH2 —CH2 —COOH
Физические свойства
Молярная масса 75,07 г/моль
Плотность 1,607 г/см³
Термические свойства
Т. плав. 233 °C
290 °C
Удельная теплота испарения −528,6 Дж/кг
Удельная теплота плавления −981,1 Дж/кг
Химические свойства
pKa 2,34
9,58
Растворимость в воде хорошая, 24.99 г/100 мЛ (25 °C)[1]
растворим в пиридине, умеренно растворим в этаноле, нерастворимый в эфире
Классификация
Рег. номер CAS 56-40-6
PubChem 750
Рег. номер EINECS 200-272-2
SMILES
InChI
ChEBI 15428, 57305 и 42964
ChemSpider 730
Безопасность
ЛД50 2,6 г/кг
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Глици́н (аминоуксусная кислота, аминоэтановая кислота) — простейшая алифатическая аминокислота, единственная протеиногенная аминокислота, не имеющая оптических изомеров. Неэлектролит. Название глицина происходит от др.-греч. γλυκύς, glycys — сладкий, из-за сладковатого вкуса аминокислоты. Применяется в медицине в качестве ноотропного лекарственного средства. Глицином («глицин-фото», параоксифенилглицин) также иногда называют п-гидроксифениламиноуксусную кислоту, проявляющее вещество в фотографии.

Химические свойства

Получение

Глицин можно получить в ходе хлорирования карбоновых кислот и дальнейшем взаимодействии с аммиаком :

Ch4COOH→Cl2ClCh3COOH→Nh4h3NCh3COOH{\displaystyle {\mathsf {CH_{3}COOH{\xrightarrow[{}]{Cl_{2}}}ClCH_{2}COOH{\xrightarrow[{}]{NH_{3}}}H_{2}NCH_{2}COOH}}}

Соединения

Глицин, как кислота, с ионами металлов образует сложные соли (глиценаты или хелаты)[2], Глицинат натрия, Глицинат железа, Глицинат меди, Глицинат цинка, Глицинат марганца и др.[3]

Биологическая роль

Глицин входит в состав многих белков и биологически активных соединений. Из глицина в живых клетках синтезируются порфирины и пуриновые основания.

Глицин также является нейромедиаторной аминокислотой, проявляющей двоякое действие. Глициновые рецепторы имеются во многих участках головного мозга и спинного мозга. Связываясь с рецепторами (кодируемые генами GLRA1, GLRA2, GLRA3 и GLRB), глицин вызывает «тормозящее» воздействие на нейроны, уменьшает выделение из нейронов «возбуждающих» аминокислот, таких, как глутаминовая кислота, и повышает выделение ГАМК. Также глицин связывается со специфическими участками NMDA-рецепторов и, таким образом, способствует передаче сигнала от возбуждающих нейротрансмиттеров глутамата и аспартата.[4] В спинном мозге глицин приводит к торможению мотонейронов, что позволяет использовать глицин в неврологической практике для устранения повышенного мышечного тонуса[источник не указан 595 дней].

В медицине

Всемирная организация здравоохранения не располагает данными о доказанной эффективности или клинической значимости употребления глицина в любой форме, кроме раствора для промывания в урологии.[источник не указан 77 дней]

Производители же фармакологических препаратов глицина заявляют, что глицин оказывает успокаивающее, слабое противотревожное и антидепрессивное действие, ослабляет выраженность побочных эффектов антипсихотических средств (нейролептиков), снотворных и противосудорожных средств, включён в ряд терапевтических практик по снижению алкогольной, опиатной и других видов абстиненции как вспомогательный препарат, оказывающий слабовыраженное седативное и транквилизирующее действие. Обладает некоторыми ноотропными свойствами, улучшает память и ассоциативные процессы.

Глицин является регулятором обмена веществ, нормализует и активирует процессы защитного торможения в центральной нервной системе, уменьшает психоэмоциональное напряжение, повышает умственную работоспособность.

Глицин содержится в значительных количествах в церебролизине (1,65-1,80 мг/мл)[4].

В фармацевтической индустрии таблетки глицина иногда комбинируют с витаминами (B1, B6, B12[5] или D3 в Глицин D3).

Лекарственные препараты глицина выпускаются в виде подъязычных таблеток. Таблетки имеют белый цвет, выпускаются в виде плоскоцилиндрических капсул с фаской. Одна таблетка содержит действующее вещество глицин микрокапсулированный – 100 мг и вспомогательные компоненты: водорастворимая метилцеллюлоза – 1 мг, магния стеарат – 1 мг. Контурные ячейковые блистеры (10, 50 штук) расфасованы в картонные упаковки.

Применение в урологии

1,5 % раствор глицина для орошения, USP (фармокопея США) — стерильный, непирогенный, гипотонический водный раствор глицина, предназначенный только для урологического орошения во время трансуретральных хирургических процедур[6].

В пищевой промышленности

В пищевой промышленности зарегистрирован в качестве пищевой добавки E640 и его натриевые соли Е64Х. Разрешена в России.[7]

Нахождение вне Земли

Глицин был обнаружен на комете 81P/Вильда (Wild 2) в рамках распределённого проекта [email protected][8][9]. Проект направлен на анализ данных от научного корабля Стардаст («Звёздная пыль»). Одной из его задач было проникнуть в хвост кометы 81P/Вильда (Wild 2) и собрать образцы вещества — так называемой межзвёздной пыли, которая представляет собой древнейший материал, оставшийся неизменным со времён образования Солнечной системы 4,5 млрд лет назад[10].

15 января 2006 года после семи лет путешествия космический корабль вернулся назад и сбросил на Землю капсулу с образцами звёздной пыли. В этих образцах были найдены следы глицина. Вещество явно имеет неземное происхождение, потому что в нём гораздо больше изотопа C¹³, чем в земном глицине[11].

В мае 2016 года учёными обнародованы данные об обнаружении глицина в облаке газа вокруг кометы 67P/Чурюмова—Герасименко[12].

См. также

Примечания

wiki.bio

Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот.

Амины

Амины – производные аммиака, в молекуле которого один, два или все три атома водорода замещены на углеводородные радикалы.

По количеству замещенных атомов водорода амины делят на:

первичные вторичные третичные
R-NH2

По характеру углеводородных заместителей амины делят на

Общие особенности строения аминов

Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:

По этой причине у аминов как и у аммиака существенно выражены основные свойства.

Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:

Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н+.

Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.

Химические свойства предельных аминов

Как уже было сказано, амины обратимо реагируют с водой:

Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:

Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.

Основные свойства предельных аминов увеличиваются в ряду.

Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H+.

Взаимодействие с кислотами

Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:

Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:

Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:

2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N2 и воды. Например:

Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:

Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой не взаимодействуют.

Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

Взаимодействие с галогеналканами

Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:

Получение аминов:

1) Алкилирование аммиака галогеналканами:

В случае недостатка аммиака вместо амина получается его соль:

2) Восстановление металлами (до водорода в ряду активности) в кислой среде:

с последующей обработкой раствора щелочью для высвобождения свободного амина:

3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:

Химические свойства анилина

Анилин – тривиальное название аминобензола, имеющего формулу:

Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.

Взаимодействие анилина с кислотами

Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:

Взаимодействие анилина с галогенами

Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах , втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.

Взаимодействие анилина с азотистой кислотой

Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.

Реакции алкилирования анилина

С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:

Получение анилина

1. Восстановление маталлами нитробензола в присутствии сильных кислот-неокислителей:

C6H5-NO2 + 3Fe + 7HCl = [C6H5-NH3]+Cl- + 3FeCl2 + 2H2O

2. Далее полученную соль обрабатывают щелочью для высвобождения анилина:

[C6H5-NH3]+Cl + NaOH = C6H5-NH2 + NaCl + H2O

В качестве металлов могут быть использованы любые металлы, находящиеся до водорода в ряду активности.

Реакция хлорбензола с аммиаком:

С6H5−Cl + 2NH3 → C6H5NH2 + NH4Cl

Химические свойства аминокислот

Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH2) и карбокси- (-COOH) группы.

Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.

Таким образом, общую формулу аминокислот можно записать как (NH2)xR(COOH)y, где x и y чаще всего равны единице или двум.

Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.

Кислотные свойства аминокислот

Образование солей с щелочами и карбонатами щелочных металлов

Этерификация аминокислот

Аминокислоты могут вступать в реакцию этерификации со спиртами:

NH2CH2COOH + CH3OH → NH2CH2COOCH3+ H2O

Основные свойства аминокислот

1. Oбразование солей при взаимодействии с кислотами

NH2CH2COOH + HCl → [NH3CH2COOH]+Cl

2. Взаимодействие с азотистой кислотой

NH2-CH2-COOH + HNO2 → НО-CH2-COOH + N2↑ + H2O

Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами

3. Алкилирование

NH2CH2COOH + CH3I → [CH3NH2CHCOOH]+I

4. Взаимодействие аминокислот друг с другом

Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-

При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:

scienceforyou.ru


Смотрите также

     
     
Лекарственные растения для лечения заболеваний на букву А Лекарственные растения для лечения заболеваний на букву Б Лекарственные растения для лечения заболеваний на букву В
Лекарственные растения для лечения заболеваний на букву Г Лекарственные растения для лечения заболеваний на букву Д Лекарственные растения для лечения заболеваний на букву Е
Лекарственные растения для лечения заболеваний на букву Ж Лекарственные растения для лечения заболеваний на букву З Лекарственные растения для лечения заболеваний на букву И
Лекарственные растения для лечения заболеваний на букву К Лекарственные растения для лечения заболеваний на букву Л Лекарственные растения для лечения заболеваний на букву М
Лекарственные растения для лечения заболеваний на букву Н Лекарственные растения для лечения заболеваний на букву О Лекарственные растения для лечения заболеваний на букву П
Лекарственные растения для лечения заболеваний на букву Р Лекарственные растения для лечения заболеваний на букву С Лекарственные растения для лечения заболеваний на букву Т
Лекарственные растения для лечения заболеваний на букву У Лекарственные растения для лечения заболеваний на букву Ф
Лекарственные растения для лечения заболеваний на букву Ц Лекарственные растения для лечения заболеваний на букву Ч Лекарственные растения для лечения заболеваний на букву Ш
Лекарственные растения для лечения заболеваний на букву Э Лекарственные растения для лечения заболеваний на букву Ю Лекарственные растения для лечения заболеваний на букву Я
 
Карта сайта, XML.