ГлавнаяСбор Сушка   Поиск
     
     
Лекарственные растения на букву А Лекарственные растения на букву Б Лекарственные растения на букву В
Лекарственные растения на букву Г Лекарственные растения на букву Д Лекарственные растения на букву Е
Лекарственные растения на букву Ж Лекарственные растения на букву З Лекарственные растения на букву И
Лекарственные растения на букву К Лекарственные растения на букву Л Лекарственные растения на букву М
Лекарственные растения на букву Н Лекарственные растения на букву О Лекарственные растения на букву П
Лекарственные растения на букву Р Лекарственные растения на букву С Лекарственные растения на букву Т
Лекарственные растения на букву У Лекарственные растения на букву Ф Лекарственные растения на букву Х
Лекарственные растения на букву Ц Лекарственные растения на букву Ч Лекарственные растения на букву Ш
Лекарственные растения на букву Щ Лекарственные растения на букву Э Лекарственные растения на букву Ю,Я
 

Когда появился пенициллин


История открытия пенициллина. Досье - Биографии и справки

ТАСС-ДОСЬЕ /Юлия Ковалева/. 75 лет назад, 12 февраля 1941 г., в Лондоне британские ученые Говард Флори и Эрнст Чейн впервые применили пенициллин для лечения человека. Редакция ТАСС-ДОСЬЕ подготовила материал об истории открытия этого препарата.

Пенициллин - антибиотик, обладающий широким антимикробным действием. Является первым эффективным лекарством против многих тяжелых заболеваний, в частности, сифилиса и гангрены, а также инфекций, вызываемых стафилококками и стрептококками. Его получают из некоторых видов плесневого грибка рода Penicillium (лат. penicillus - "кисть"; под микроскопом спороносные клетки плесени похожи на кисточку).

История открытия

Упоминания об использовании плесени в лечебных целях встречаются в трудах персидского ученого Авиценны (II в.) и швейцарского врача и философа Парацельса (XIV в.). Боливийский специалист по этноботанике Энрике Облитас Поблете в 1963 г. описал применение плесени индейскими знахарями в эпоху инков (XV-XVI вв.).

В 1896 г. итальянский врач Бартоломео Гозио, изучая причины поражения риса плесенью, вывел формулу антибиотика, схожего с пенициллином. Ввиду того, что он не смог предложить практическое применение нового лекарства, его открытие было забыто. В 1897 г. французский военный врач Эрнест Дюшен заметил, что арабские конюхи собирают плесень с сырых седел и лечат ею раны лошадей. Дюшен тщательно обследовал плесень, опробовал ее на морских свинках и выявил ее разрушающее действие на палочку брюшного тифа. Результаты своих исследований Эрнест Дюшен представил в парижском институте Пастера, но они также не были признаны. В 1913 г. американским ученым Карлу Альсбергу и Отису Фишеру Блэку удалось получить из плесени кислоту, обладающую противомикробными свойствами, однако их исследования были прерваны с началом Первой мировой войны.

В 1928 г. британский ученый Александр Флеминг проводил рядовой эксперимент в ходе исследования сопротивляемости человеческого организма бактериальным инфекциям. Он обнаружил, что некоторые колонии стафилококковых культур, оставленные им в лабораторных чашках, заражены штаммом плесени Penicillium Notatum. Вокруг пятен плесени Флеминг заметил область, в которой бактерий не было. Это позволило ему сделать вывод о том, что плесень вырабатывает убивающее бактерии вещество, которое ученый назвал "пенициллином".

Флеминг недооценил свое открытие, полагая, что получить лекарство будет очень трудно. Его работу продолжили ученые из Оксфорда Говард Флори и Эрнст Чейн. В 1940 г. они выделили препарат в чистом виде и изучили его терапевтические свойства. 12 февраля 1941 г. инъекция пенициллина впервые была сделана человеку. Пациентом Флори и Чейна стал лондонский полицейский, умиравший от заражения крови. После нескольких инъекций ему стало лучше, однако запас лекарства быстро закончился, и больной скончался. В 1943 г. Говард Флори передал технологию получения нового препарата американским ученым, в США было налажено массовое производство антибиотика. В 1945 г. Александр Флеминг, Говард Флори и Эрнст Чейн были удостоены Нобелевской премии по физиологии и медицине.

Исследования российских и советских ученых

В 1870-х гг. исследованием плесени занимались медики Алексей Полотебнов и Вячеслав Манассеин, которые обнаружили, что она блокирует рост других микроорганизмов. Полотебнов рекомендовал использовать эти особенности плесени в медицине, в частности, для лечения кожных заболеваний. Но идея не получила распространения.

В СССР первые образцы пенициллина получили микробиологи Зинаида Ермольева и Тамара Балезина. В 1942 г. они обнаружили штамм Penicillium Crustosum, продуцирующий пенициллин. В ходе испытаний лекарство показало гораздо большую активность, чем его английские и американские аналоги. Однако полученный антибиотик терял свойства при хранении и вызывал повышение температуры у пациентов.

В 1945 г. в Советском Союзе начались испытания пенициллина, разработанного по западному образцу. Технология его производства была освоена НИИ эпидемиологии и гигиены Красной Армии под руководством Николая Копылова.

Признание

Массовое производство пенициллина было налажено во время Второй мировой войны. По некоторым оценкам, благодаря этому антибиотику в годы войны и после нее были спасены около 200 млн человек. Открытие этого препарата не раз признавалось одним из важнейших научных достижений в истории человечества. Большинство современных антибиотиков были созданы именно после исследования лечебных свойств пенициллина.

tass.ru

Флеминг, Александр — Википедия

В Википедии есть статьи о других людях с фамилией Флеминг.

Сэр Александр Флеминг (англ. Alexander Fleming; род. 6 августа 1881 года, Дарвел, Айршир, Шотландия, Великобритания — 11 марта 1955 года, Лондон, Англия, Великобритания) — британский микробиолог. Открыл лизоцим и впервые выделил пенициллин из плесневых грибов Penicillium notatum — исторически первый антибиотик.

Оба открытия произошли в 1920-е годы и в большей степени случайно. Учёный посеял слизь из собственного носа на чашку Петри, в которой находились бактерии, и через несколько дней обнаружил, что в местах, куда была нанесена слизь, бактерии были уничтожены. Первая статья о лизоциме вышла в 1922 году.

В 1945 году Флеминг, Флори и Чейн были удостоены Нобелевской премии в области физиологии и медицины. В сентябре 1945 накануне приезда во французскую столицу Александра Флеминга парижские газеты писали:

«Для разгрома фашизма и освобождения Франции он сделал больше целых дивизий»

Беспорядок в лаборатории Флеминга ещё раз сослужил ему службу. В 1928 году он обнаружил, что на агаре в одной из чашек Петри с бактериями Staphylococcus aureus выросла колония плесневых грибов. Колонии бактерий вокруг плесневых грибов стали прозрачными из-за разрушения клеток. Флемингу удалось выделить активное вещество, разрушающее бактериальные клетки, — пенициллин, работа была опубликована. Его работу продолжили Говард Флори и Эрнст Борис Чейн[2], разработавшие методы очистки пенициллина. Массовое производство пенициллина было налажено во время Второй мировой войны.

В 1999 году журнал «Тайм» назвал Флеминга одним из ста самых важных людей XX века за его открытие пенициллина и сообщил:

Это открытие изменит ход истории. Вещество, которое Флеминг назвал пенициллином, является очень активным противоинфекционным средством.

После того, как возможности данного соединения были оценены по достоинству, пенициллин стал неотъемлемой частью любой методики лечения бактериальных инфекций. К середине века открытое Флемингом вещество широко вошло в производство фармацевтических препаратов, стал осуществляться его искусственный синтез, что помогло справляться с большинством древнейших заболеваний, таких как сифилис, гангрена и туберкулёз.

Флеминг родился 6 августа 1881 года в ферме Лохфильд, недалеко от Дарвела, расположенном в области Айршир в Шотландии. Он был третьим из четырёх детей от второй жены (к четырём детям от первого брака) фермера Хуга Флеминга (1816—1888), Грэйс Стирлинг Мортон (1848—1928), дочери соседнего фермера. Второй раз отец женился в 59 лет, а умер, когда Александру (известному как Алек) было всего 7 лет.

До двенадцати лет Флеминг учился в сельской школе в Дарвеле, а затем ещё два года в академии Килмарнок[en]. В четырнадцать лет он переехал к своим братьям в Лондон, где начал работать клерком в офисе доставки, а также посещать занятия в Королевском Политехническом институте[3] на Риджент-стрит.

Его старший брат Томас уже работал врачом-офтальмологом и, последовав его примеру, Александр также решил изучать медицину. На его выбор медицинской школы в значительной степени повлияло то, что он участвовал в матче по водному поло со студентами из госпиталя Святой Марии. В медицинской школе Флеминг выиграл стипендию в 1901 году. Также стипендии Лондонского университета MB и BS в 1906 году достались ему[4].

В то время у него не было сильного пристрастия к какой-либо конкретной области медицинской практики. Работы по хирургии показали, что он мог бы быть выдающимся хирургом. Но жизнь направила его по другому пути, связанному с «лабораторной медициной». Будучи студентом, он попал под влияние профессора патологии Алмрота Райта, который приехал в госпиталь Святой Марии в 1902 году. Райт, ещё будучи на военно-медицинской службе, разработал вакцинацию против брюшного тифа. Но у Райта были ещё и другие идеи лечения пациентов, уже страдающих от бактериальных инфекций, стимулированием их организма на немедленный ответ инфекциям выработкой «антител». Он пытался измерять количество этих антител в крови пациента. Это требовало новых методов и значительного труда. Группа молодых людей, которые присоединились к Райту, в том числе Джон Фриман, Бернард Спилсбери и Джон Уэллс, были уже не в состоянии справиться с этой работой. Поэтому и Флеминг был приглашён присоединиться к команде, как только он получил учёную степень в 1906 году.

Попав таким образом в исследовательскую лабораторию, прикреплённую к больнице, Флеминг проработал там до самой смерти пятьюдесятью годами спустя.

Во время Первой мировой войны Флеминг служил капитаном в Королевской медицинской армии. Он и многие его коллеги работали в госпиталях на поле боя на западном фронте во Франции. В 1918 году Флеминг вернулся в госпиталь Святой Марии, где он был избран профессором бактериологии в 1928 году.

За период своих исследований Флеминг внёс значительный вклад в развитие медицины, поскольку, как и его начальник Райт, он постоянно пытался изучить что-то новое. Райт предложил множество необычных способов микроизмерения с помощью капиллярных трубок, стекла, резиновых сосок и калибровки по ртути. Флеминг быстро заметил, что они могут помочь в диагностике по выявлению сифилиса, которая была разработана Вассерманом и некоторыми другими учёными в Германии. Его методики позволили провести тест с 0,5 мл крови пациента, взятых из пальца, вместо 5 мл, которые ранее нужно было брать из вены.

Очень скоро Райт был заинтересован открытием Эрлиха целебных свойств диоксидиаминоарсенобензина дигидрохлорида, известного больше как «Сальварсан» или «препарат № 606». Инъекция препарата должна была осуществляться в вену, а в то время с этим были связаны некоторые трудности. Флемингу удалось справиться с этой проблемой, и в одном из первых докладов, опубликованных на английском языке, он рассказал о технике и результатах, полученных в результате работы с 46 пациентами.

Во время Первой мировой войны стало очевидно, что бактериальная инфекция в глубоких ранах от взрывчатых веществ погубит очень много жизней и лишит огромное количество людей их конечностей. К Райту обратились с просьбой создать лабораторию по изучению этих инфекций во Франции, и он взял с собой капитана Флеминга. Эта лаборатория оказалась первой исследовательской медицинской лабораторией военного времени, она была создана в здании казино в Булони.

В начале 1915 года Флеминг сообщил об обнаружении в ранах большого количества видов микробов, некоторые из которых были ещё совсем неизвестны большинству бактериологов того времени, также он указал, что в ранах преобладали стрептококки. Оказалось, что многие из раневых инфекций были вызваны микробами, присутствующими на фрагментах одежды и в грязи и попадавшими глубоко в организм при ранениях.

Наблюдения за ранами привели ещё к одному важному заключению о том, что применение антисептиков в течение нескольких часов после ранения не полностью уничтожает бактериальные инфекции, хотя многие хирурги считали именно так. Райта же это нисколько не удивило, но им с Флемингом пришлось провести много месяцев в напряжённой работе по исследованию данного вопроса, чтобы убедить хирургов в своей правоте.

Райту и Флемингу удалось показать, что, во-первых, антисептики не достигали всех микробов, потому что очень часто последние проникали глубоко в ткани костей, хрящей, мышц и т. д., и, во-вторых, антибактериальная активность используемого раствора очень быстро уменьшалась при взаимодействии с белковыми и клеточными элементами лимфы, гноя, крови и окружающих рану тканей; раствор, таким образом, уничтожал лейкоциты пациентов, которые в естественных условиях эффективно защищают их организм.

Работа, на которой основаны эти два важнейших вывода, почти полностью принадлежала Райту, но Флеминг, который помогал в работе, внёс ценный вклад в решение технических проблем. Именно он провёл опыты с «искусственной раной», из которых стало очевидно, что антисептикам не удавалось достичь глубоких участков ран и приводить к гибели там микробов.

Другим простым устройством, которое Флемингу удалось применить (с должным признанием её автора, доктора Битти) при исследованиях антисептиков, являлось покрытие жидких культур организмов разжиженным вазелином. Рост культур приводил к образованию газов и поднятию вазелина в колонке, изменение объёма давало приблизительное представление о росте культур. С помощью этого метода можно было легко продемонстрировать, что активность многих антисептиков значительно уменьшалась в белковых жидкостях, таких как сыворотка крови. Также удивительным оказалось то, что при определённых концентрациях антисептиков (в том числе карболовой кислоты, йода, хлорноватистой кислоты, гипохлорита натрия и хлорамина-Т) бактериальный рост даже возрастал. Используя это же устройство, Флемингу также удалось продемонстрировать, что клостридия, возбуждающая заболевание гангрены, дала гораздо более обильную культуру при выращивании совместно с аэробными организмами из ран, такими как стафилококки и стрептококки.

Удалось выявить ещё один аспект «антисептической проблемы», когда Райт и Флеминг перенесли своё внимание на антибактериальное воздействие лейкоцитов в инфицированной ране. Они обнаружили, что, при благоприятных условиях, лейкоциты гноя и крови могли уничтожать очень большоe количество стафилококков и стрептококков, а под влиянием антисептиков этот эффект часто уменьшался. В сложившейся ситуации Флеминг предложил простой опыт: сперва он прикладывал стеклянную пластинку к ране, а затем сразу же на неё наносил питательную среду Агар-агар. Он провёл несколько таких опытов на ране с разной степенью промывки антисептиком и заметил, что рост бактерий был обильнее в более поздних культурах. Видимо антисептики губили много лейкоцитов, которые так необходимы для предотвращения размножения микробов.

Убедительное опытное подтверждение заключений Флеминга было проведено им после войны с использованием техники «слайд ячейки». Методика позволила легко показать, что при попадании микробов в кровь лейкоциты оказывают очень сильное бактерицидное действие, а при добавлении антисептиков эффект значительно снижается, или полностью ликвидируется.

Описание исследований Флеминга по раневым инфекциям было изложено в его Хантерийской лекции в Королевском колледже хирургов в 1919 году, и в его же сообщении «Сравнение деятельности антисептиков на бактерии и лейкоциты» в Королевском обществе в 1924 году.

Долгие размышления Флеминга и Райта на тему физиологических механизмов защиты ран при попадании инфекции привели их в 1922 году к открытию микроборастворяющего фермента, содержащегося в носовых выделениях, который он назвал «лизоцим». В некотором смысле это открытие было двойным: вещество было литическим агентом, и, как оказалось, многие микробы оказались чувствительны к его действию.

В Королевском обществе Флеминг рассказал, как он ежедневно выделял культуры из носовой секреции пациента (на самом деле его собственной) в ходе «простуды». Первые четыре дня почти ничего не появлялось, но в последний день возникло «большое количество мелких колоний, которые оказались грам-положительными кокками, которые распределялись нерегулярно, но с тенденцией к диплоккокной и тетрадной формации». С помощью Райта ему впоследствии удалось открыть микроба, который ранее не был известен, и назвал его Micrococcus Lysodeicticus (то есть растворимые).

До сих пор не совсем ясно, что заставило Флеминга исследовать носовую слизь и обнаружить вещество, которое оказывает мощное литическое действие на микробов. Вероятно, на некоторых участках пластины, где присутствовали частицы слизи, подавлялся или предотвращался рост микрококкуса. В любом случае, видимо, он подозревал это, и его подозрение подтвердилось, когда он приготовил суспензию из микробов из свежей культуры и добавил к ней каплю разбавленной носовой слизи. К его удивлению суспензия стала совершенно прозрачной уже через минуту или две.

Последующие эксперименты показали, что подобный эффект растворения микробов может быть продемонстрирован и с человеческими слезами, мокротой, слюной, с экстрактами многих тканей человеческого тела, а также с яичным белком и другими животными и растительными тканями.

Как ни странно, ни один другой микроб не растворялся настолько хорошо, как Micrococcus Lysodeicticus, хотя многие другие микробы, являющиеся возбудителями заболеваний человека, также подвергались воздействию, но только в меньшей степени. Был сделан очень важный вывод о том, что фермент лизоцим может быть получен из человеческих лейкоцитов. Бактерицидное действие лейкоцитов, полученных из человеческой крови, которое Райт и Флеминг демонстрировали во время войны, возможно, были связаны с действием этого фермента.

В целом открытие лизоцима, возможно, не было огромным интеллектуальным подвигом, но следует помнить, что сотни бактериологов во всем мире изучали носовые выделения в течение многих лет в надежде найти организмы, ответственные за «простуду», но ни одному из них не удалось открыть этот фермент. Флемингу также не удалось найти причину простуды, но открытие лизоцима, несомненно, стало важным этапом в развитии иммунологии.

«Когда я проснулся на рассвете 28 сентября 1928 года, я, конечно, не планировал революцию в медицине своим открытием первого в мире антибиотика или бактерии-убийцы», затем Флеминг сказал: «Но я полагаю, что именно это я и сделал»[5]

Попыткой очистить и выделить пенициллин занимались Чейн и Флори в Оксфорде в 1940 году. Экстракцией эфиром им удалось выделить достаточно чистый материал для предварительных испытаний его антибактериальной эффективности на лабораторных животных, заражённых соответственно вирулентными стафилококками, стрептококками и хлостридиумсептиками. (Позже оказалось, что состав, используемый в этих исследованиях содержал лишь около 1 % пенициллина.) Опыты были удивительно успешными, и учёные призвали Флори и его команду участвовать в разработке методов по извлечению. Раствор эфира был заменён на амилацетат с последующим подкислением. Таким способом были получены более стабильные образцы пенициллина и удалены излишние примеси[6][7].

Выводы Флеминга о нетоксичности пенициллина для лабораторных животных и человеческих лейкоцитов были подтверждены и расширены, и уже в 1941 году получены положительные результаты по лечению нескольких тяжёлых инфекций человека. Сразу же последовали и другие удовлетворительные результаты по лечению этим антибиотиком, таким образом пенициллину было суждено занять уникальное место среди эффективных средств против человеческих болезней. Остеомиелит и стафилококковая септицемия, родильная горячка и другие инвазивные стрептококковые инфекции, пневмония, инфекции ран и ожогов, газовой гангрены, сифилис и гонорея — лечение всех этих заболеваний было очень успешным. К 1944 году, благодаря огромным усилиям американских производителей и исследовательских групп, стало возможным лечить пенициллином каждого раненого на фронте. Когда война закончилась, поставки были достаточными, чтобы лечить население этой страны и Северной Америки. В послевоенные годы было обнаружено, что даже бактериальный эндокардит, который ранее считался смертельным заболеванием почти у 100 % пациентов, часто может быть излечен большими дозами.

Флеминг был скромен в своём участии в разработке пенициллина, описывая свою известность как «Миф Флеминга». Он был первым, кто обнаружил активные свойства вещества, что дало ему привилегию назвать его: пенициллин. Также он хранил, выращивал и распространял исходную плесень в течение двенадцати лет, и продолжал делать это до 1940 года, пытаясь получить помощь от любого химика, который мог иметь достаточно навыков, чтобы выделить из неё пенициллин. Сэр Генри Харрис сказал в 1998 году: «Без Флеминга не было бы Чейна; без Чейна не было бы Флори; без Флори не было бы Хитли; без Хитли не было бы пенициллина»[8].

Все эти открытия были сделаны благодаря усилиям Флеминга с одной стороны в 1928—1929 годы, Чейна и Флори с их коллегами с другой стороны в 1940—1943 годы. Было отмечено, что работа Флеминга с пенициллом стояли наравне с другими более ранними работами на континенте. В одной из них, Ваудремер из Института Пастера в Париже сообщил, что при длительном контакте с плесенью Aspergillus fumigatus происходила гибель инфекции туберкулёзной палочки и, на основании этого наблюдения, он пытался лечить более 200 пациентов, страдающих от туберкулёза. Но опыт оказался совершенно безрезультатным. Аналогичные опыты были проведены и с другими формами плесени и бактерий. Ясно, что антагонизм между различными микробиологическими родами и видами был «в воздухе» на протяжении нескольких лет, и Флеминг сам признал это в своей Нобелевской лекции в 1945 году.

Ясно также, что работа Флеминга принесла на свет новое вещество, которое оказалось не токсичным для тканей животных и для человеческих лейкоцитов. Все оставалось бы на том же этапе в течение целых десятилетий, если бы Флори не занялся своими исследованиями, а также если бы не было химических ноу-хау Чейна, и их совместного терпения и энтузиазма по преодолению многих трудностей, и, возможно, пенициллин ещё нельзя было бы использовать в качестве практического терапевтического агента.

Случайное открытие Флеминга и выделение пенициллина в сентябре 1928 года знаменовало начало современных антибиотиков. Флеминг также обнаружил, что бактерии обладали устойчивостью к антибиотикам, если действовали малым количеством пенициллина, либо если антибиотик употреблялся слишком короткое время. Алмрот Райт предсказал устойчивость к антибиотикам ещё до того, когда это было обнаружено экспериментально. Флеминг рассказал об использовании пенициллина в его многочисленных выступлениях по всему миру. Он предупредил, что не стоит использовать пенициллин, пока заболевание не будет диагностировано, а если антибиотик всё-таки необходим, то нельзя использовать пенициллин в течение короткого времени и в совсем малых количествах, поскольку при этих условиях у бактерий развивается устойчивость к антибиотикам.

Популярная история[9] о том, что отец Уинстона Черчилля оплачивал образование Александра Флеминга после того, как отец будущего микробиолога спас юного Уинстона от смерти, — не более чем легенда, причем она имела еще и продолжение, согласно которому Уинстон Черчилль уже в зрелом возрасте, заболев тяжелейшей формой воспаления легких, был спасён якобы благодаря открытому Александром Флемингом пенициллину. Александр Флеминг в письме[10] своему другу и коллеге Андре Грации описал эту историю как «чудесные сказки». «Я не спасал жизнь Уинстона Черчилля во время Второй мировой войны, — заявил он. — Когда Черчилль заболел в Карфагене в Тунисе в 1943 году, он был спасён лордом Мораном, который использовал сульфаниламиды, не имея опыта работы с пенициллином». Хотя в Дейли телеграф 21 декабря 1943 года сообщалось, будто Черчилля излечили пенициллином, на самом деле ему помог новый препарат группы сульфаниламидов — сульфапиридин, известный в то время под кодовым названием M & B 693, открытый и полученный фирмой Мэй и Бэйкер Лтд (Дагенем, Эссекс) — дочерней компанией французской группы «Рон-Пуленк». В последующей радиотрансляции Черчилль упомянул новое лекарство: «Замечательный M & B»[11]. Вполне вероятно, что достоверная информация о сульфаниламидах не дошла до газет по политическим причинам. Ведь первый препарат этой группы и вообще первый в мире синтетический антибактериальный препарат — пронтозил — был открыт немецкой лабораторией Байер, а поскольку Великобритания тогда находилась в состоянии войны с Германией, было, видимо, решено, что лучше поднять боевой дух британских солдат историей с исцелением Черчилля отечественным пенициллином.

Первая жена Флеминга, Сара, умерла в 1949 году. Их единственный ребёнок, Роберт Флеминг, в дальнейшем стал врачом. Александр Флеминг через четыре года после смерти Сары женился 9 апреля 1953 года на гречанке Амалии Куцури-Вурекас, коллеге по госпиталю Святой Марии; она умерла в 1986 году.

Флеминг был весьма активным и деятельным масоном. Его масонская биография описывает следующие его должности и звания: член ряда английских масонских лож, в 1925 году Флеминг становится досточтимым мастером ложи «Св. Мария» № 2682, затем её секретарём, в 1935 году — досточтимый мастер ложи «Милосердие» № 3286, затем её казначей. В 1942 году Флеминг был избран первым великим диаконом Объединённой великой ложи Англии. Также, он был посвящён в 30° Древнего и принятого шотландского устава[12].

В 1955 году Флеминг умер в своём доме в Лондоне от сердечного приступа. Он был кремирован, и через неделю его прах захоронили в соборе святого Павла.

Почётные звания и должности, наследие[править | править код]

Открытие Флемингом пенициллина изменило мир современной медицины, позволило создать ряд жизненно необходимых антибиотиков. Пенициллин спасал и до сих пор спасает миллионы людей во всем мире[13].

Лаборатория в госпитале Святой Марии в Лондоне, где Флеминг открыл пенициллин, теперь стала музеем Флеминга. Также в городе Ломита в Лос-Анджелесе, штат Калифорния создана школа, названная именем Александра Флеминга. Вестминстерский университет назвал одно из своих студенческих зданий, расположенных вблизи Олд-стрит в честь Флеминга, в его честь также названы здания Имперского колледжа. Они расположены в студенческом городке Саут-Кенсингтон, в них обучается большое количество студентов по разным медицинским специальностям.

  • Флеминг, Флори и Чейн вместе получили Нобелевскую премию по физиологии и медицине в 1945 году. Согласно правилам Нобелевского комитета, приз может быть разделён между максимум тремя людьми. Нобелевская медаль Флеминга была приобретена Национальным музеем Шотландии в 1989 году и представлена в его экспозиции после масштабной реконструкции.[14]
  • Флеминг был удостоен звания Хантерианского профессора Королевского колледжа хирургии в Англии.
  • Флеминг и Флори были посвящены в рыцари в 1944 году.
  • В 2000 году три крупных шведских журнала указали пенициллин как наиболее важное открытие тысячелетия. По оценкам некоторых изданий, с помощью этого открытия были спасены около 200 миллионов жизней.
  • Статуя Александра Флеминга стоит рядом с главной ареной в Мадриде, Пласа-де-Торос-де-Лас-Вентас. Она была возведена по соглашению с благодарными матадорами, поскольку пенициллин значительно снизил число смертей.
  • Флемингово Намести — площадь, названная именем Флеминга в районе Чешского технического университета в Праге.
  • В 1970 году Международный астрономический союз присвоил имя Флеминга кратеру на обратной стороне Луны (совместно с Вильяминой Флеминг).
  • В середине 2009 года Флеминг был изображён на новой серии банкнот, выпущенных Клайдсдейлским банком, его изображение размещено на новой купюре 5 фунтов стерлингов.
  1. ↑ https://royalsocietypublishing.org/doi/pdf/10.1098/rsbm.1956.0008
  2. ↑ Karl Grandin, ed. (1945). «Alexander Fleming Biography». Les Prix Nobel. The Nobel Foundation. Retrieved 2008-07-24.
  3. ↑ «Alexander Fleming Biography». Retrieved 2010-04-11.
  4. ↑ L. Colebrook. Alexander Fleming(1881—1955), Biogr. Mems Fell. R. Soc.1956 2, 117—127.
  5. ↑ Kendall F. Haven, Marvels of Science (Libraries Unlimited, 1994) p182
  6. ↑ L. Colebrook. Alexander Fleming, Biogr. Membs. Fell. R. Soc. 1956 2, 117—127.
  7. ↑ Obituary: Sir Edward Abraham — Arts & Entertainment — The Independent
  8. ↑ Henry Harris, Howard Florey and the development of penicillin, a lecture given on Sept. 29, 1998, at the Florey Centenary, 1898—1998, Sir William Dunn School of Pathology, Oxford University (sound recording)
  9. ↑ Philadelphia Enquirer, 17 July 1945: Brown, Penicillin Man, note 43 to Chapter 2
  10. ↑ 14 November 1945; British Library Additional Manuscripts 56115: Brown, Penicillin Man, note 44 to Chapter 2
  11. ↑ A History of May & Baker 1834—1984, Alden Press 1984.
  12. ↑ Морамарко М. Масонство в прошлом и настоящем БИОГРАФИИ МАСОНОВ — Электронная Библиотека истории масонства
  13. ↑ Michael, Roberts, Neil, Ingram (2001). Biology. Edition: 2, illustrated. Springer-Verlag.
  14. ↑ Our museums
  • Моруа А. Жизнь Александра Флеминга / Пер. с фр. И.Эрбург. Послесл. И.Кассирского. — М. : Молодая гвардия, 1964. — 336 с. — (ЖЗЛ; Вып. 379). — 100000 экз.
  • The Penicillin Man: the Story of Sir Alexander Fleming, Lutterworth Press, 1957, Rowland, John.

ru.wikipedia.org

Бензилпенициллин — Википедия

Бензи́лпеницилли́н (пенициллин G (PCN G) или просто пенициллин (PCN)) — N-фенилацетамид 6-аминопенициллановой кислоты. Антибиотик, получаемый из плесневого гриба пеницилла (грибов рода лат. Penicillium: лат. Penicillium chrysogenum, лат. Penicillium notatum и других). В процессе жизнедеятельности эти грибы синтезируют различные формы пенициллина: один из наиболее активных в фармакологическом плане бензилпенициллин и другие виды пенициллина, которые отличаются от первого тем, что вместо бензильной группы содержат иные радикалы. Таким образом по молекулярной структуре пенициллин это кислота, из которой получают различные соли (натриевую, калиевую, новокаиновую и другие)[1]. Семейство пенициллиновых антибиотиков включает бензилпенициллин (пенициллин G), феноксиметилпенициллин (пенициллин V) и другие[2][3].

Пенициллиновые антибиотики имеют важное историческое значение, так как они являются первыми эффективными лекарствами против многих тяжёлых заболеваний и, в частности, сифилиса, а также инфекций, вызываемых стафилококками и стрептококками. Пенициллины хорошо изучены, однако в настоящее время многие бактерии приобрели устойчивость к β-лактамным антибиотикам. Хотя, например, бледная трепонема достаточную устойчивость к пеницилинам не приобрела.

Как и другие β-лактамы, пенициллины не только препятствуют размножению клеток бактерий, в том числе и цианобактерий, но также препятствуют делению хлоропластов мхов. Но не оказывают влияния на деление пластид высших сосудистых растений[4], поскольку последние не имеют мишени для пенициллина — пептидогликановой клеточной стенки.

Многие древние культуры, в том числе древние египтяне и греки, использовали плесень и некоторые растения для лечения инфекций, так как те содержали антибиотики. Например, в Древнем Египте, Китае и Индии плесневелый хлеб использовали для дезинфекции, прикладывая его к ранам и гнойникам. Упоминания об использовании плесени в лечебных целях встречаются в трудах древних учёных и философов. В 1963 году специалист по этноботанике Энрике Облитас Поблете дал описание применению плесени индейскими знахарями в XV—XVI веках.

Пенициллин — первый антибиотик — был получен на основе продуктов жизнедеятельности микроорганизмов.

В начале 1870-х годов исследованием плесени одновременно занимались медики Алексей Герасимович Полотебнов и Вячеслав Авксентьевич Манассеин, который изучив грибок Penicillium glaucum, подробно описал основные, в частности бактериостатические, свойства зелёной плесени[5]. Полотебнов, выяснив лечебное действие плесени на гнойные раны и язвы,[6] рекомендовал использовать плесень для лечения кожных заболеваний. Его работа «Патологическое значение зелёной плесени» вышла в 1873 году. Но идея на тот момент не получила дальнейшего практического применения.

В 1896 году итальянский врач и микробиолог Бартомелео Гозио выделил из Penicillium микофеноловую кислоту, которая была активна против возбудителя сибирской язвы. Пенициллин был обнаружен в 1897 году французским военным врачом Эрнестом Дюшеном. Он заметил, что арабские конюхи использовали плесень с сёдел, чтобы обработать раны на спинах лошадей. Работая с грибами рода Penicillium, Дюшен опробовал плесень на морских свинках и обнаружил её разрушающее действие на палочку брюшного тифа. Но его работа не привлекла внимания научного сообщества.

В 1904 году русский учёный М. Г. Тартаковский сообщил, что вещество, выделяемое зелёной плесенью, подавляет развитие возбудителя куриной холеры.

В 1913 году американские учёные Карл Альсберг и Отис Фишер Блек получили из Penicillium puberulum токсичную субстанцию, обладающую противомикробными свойствами (в 1936 году, когда установили её химическую структуру, выяснилось, что это была пеницилловая кислота)[7].

Пенициллин был выделен в 1928 году Александром Флемингом из штамма гриба вида Penicillium notatum на основе случайного открытия: попадание в культуру бактерий спор плесневого гриба из внешней среды оказало на бактериальную культуру бактерицидное действие[8][9].

Несмотря на то, что статья Флемминга о пенициллине вышла ещё в 1929 году, первое время она была воспринята без энтузиазма из-за отсутствия способов его химического выделения и производства. В 1942 году, почти половина всего американского запаса пенициллина[10] — одна столовая ложка[11] — была использована для лечения всего лишь одного пациента, Анны Миллер. Имевшегося в США запаса в июне 1942 было достаточно для лечения десяти пациентов[12].

В 1940—1941 годах австралийский бактериолог Хоуард У. Флори и биохимики Эрнст Чейн и Норман Хитли работали над выделением пенициллина и разрабатывали технологию его промышленного производства сначала в Англии и, затем, в США. Они же впервые применили пенициллин для лечения бактериальных инфекций в 1941 году. В 1945 году Флемингу, Флори и Чейну была присуждена Нобелевская премия по физиологии и медицине «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях».

В СССР первые образцы пенициллина получили в 1942 году микробиологи З. В. Ермольева и Т. И. Балезина. Зинаида Виссарионовна Ермольева активно участвовала в организации промышленного производства пенициллина. Созданный ею препарат пенициллин-крустозин ВИЭМ был получен из штамма гриба вида Penicillium crustosum.

Пенициллины длительное время были основными антибиотиками, широко применявшимися в клинической практике во всех технологически развитых странах[13]. Затем, по мере развития фармакологии, были выделены и синтезированы антибиотики других групп (тетрациклины, аминогликозиды, макролиды, цефалоспорины, фторхинолоны, грамицидины и другие). Однако несмотря на большое разнообразие групп антибиотиков на современном фармацевтическом рынке и развитие резистентности к пенициллинам у многих бактерий-патогенов, пенициллины по-прежнему занимают достойное место в терапии инфекционных заболеваний, ибо основным показанием к назначению того или иного антибиотика в настоящее время является чувствительность к его действию патогенной микрофлоры (определяемая в лабораторных условиях), а также минимальное количество побочных эффектов от применения антибиотика[1].

Бензилпенициллин — антибиотик группы биосинтетических пенициллинов. Оказывает бактерицидное действие за счёт ферментативного ингибирования синтеза клеточной стенки микроорганизмов.

Активен в отношении:

К действию бензилпенициллина устойчивы штаммы Staphylococcus spp., продуцирующие пенициллиназу. Разрушается в кислой среде.

Новокаиновая соль бензилпенициллина по сравнению с калиевой и натриевой солями характеризуется большей продолжительностью действия благодаря низкой растворимости и образованию депо в месте инъекции.

После внутримышечного введения быстро всасывается из места инъекции в кровоток и широко распределяется в биологических жидкостях и тканях организма, однако в спинномозговую жидкость проникает в незначительных количествах. Бензилпенициллин хорошо проникает через плацентарный барьер. Хотя в обычных условиях после применения бензилпенициллина в спинномозговой жидкости он обнаруживается в незначительном количестве, тем не менее при воспалении мозговых оболочек на фоне усиления проницаемости гематоэнцефалического барьера концентрация антибиотика в ликворе повышается. T½ — 30 мин. Выводится с мочой. После внутримышечного введения максимальная концентрация в крови наблюдается через 30—60 минут, а через 3—4 часа после однократно проведённой внутримышечной или подкожной инъекции в крови обнаруживаются лишь следовые концентрации антибиотика. Концентрация и продолжительность циркуляции бензилпенициллина в крови зависит от величины вводимой дозы. Тем не менее, для поддержания достаточно высокой концентрации, необходимой для реализации терапевтического воздействия необходимо повторять инъекции бензилпенициллина каждые 3—4 часа. Следует учитывать, что при приёме внутрь антибиотик плохо всасывается, частично разрушается желудочным соком и бета-лактамазой, продуцируемой микрофлорой кишечника, а при внутривенном введении концентрация бензилпенициллина быстро снижается[1].

Лечение заболеваний, вызванных чувствительными к бензилпенициллину микроорганизмами: крупозная и очаговая пневмонии, эмпиема плевры, сепсис, септицемия, пиемия, острый и подострый септический эндокардит, менингиты, острый и хронический остеомиелиты, инфекции мочевыводящих и жёлчных путей, ангины, гнойные инфекции кожи, мягких тканей и слизистых оболочек, рожа, дифтерия, скарлатина, сибирская язва, актиномикоз, лечение гнойно-воспалительных заболеваний в акушерско-гинекологической практике, ЛОР-заболеваний, глазных болезней, гонорея, бленнорея, сифилис.

Со стороны пищеварительной системы: диарея, тошнота, рвота.

Эффекты, обусловленные химиотерапевтическим действием: кандидоз влагалища, кандидоз полости рта.

Со стороны ЦНС: при применении бензилпенициллина в больших дозах, особенно при эндолюмбальном введении, возможно развитие нейротоксических реакций: тошнота, рвота, повышение рефлекторной возбудимости, симптомы менингизма, судороги, кома.

Аллергические реакции: повышение температуры тела, крапивница, кожная сыпь, сыпь на слизистых оболочках, боли в суставах, эозинофилия, ангионевротический отёк. Описаны случаи анафилактического шока с летальным исходом. В таком случае полагается немедленное внутривенное введение адреналина.

Повышенная чувствительность к бензилпенициллину и другим препаратам из группы пенициллинов и цефалоспоринов. Эндолюмбальное введение противопоказано пациентам, страдающим эпилепсией.

Применение при беременности возможно только в том случае, когда ожидаемая польза превышает риск развития побочных действий. При необходимости применения в период грудного вскармливания следует решить вопрос о прекращении грудного вскармливания (молоко пациентки сцеживается, чтобы лактация не прекратилась). Причина всего этого в том, что пенициллин хорошо проникает через молочные железы в молоко матери, и через плаценту к плоду, что способно вызвать негативные последствия для последнего — у детей пенициллин способен вызывать тяжёлые аллергические реакции даже при первом применении.

С осторожностью применяют у пациентов с нарушениями функции почек, при сердечной недостаточности, предрасположенности к аллергическим реакциям (особенно при лекарственной аллергии), при повышенной чувствительности к цефалоспоринам (из-за возможности развития перекрёстной аллергии). Если через 3-5 дней после начала применения эффекта не отмечается, следует перейти к применению других антибиотиков или комбинированной терапии. В связи с возможностью развития грибковой суперинфекции целесообразно при лечении бензилпенициллином назначать противогрибковые препараты. Необходимо учитывать, что применение бензилпенициллина в субтерапевтических дозах или досрочное прекращение лечения часто приводит к появлению резистентных штаммов возбудителей. Бензилпенициллин в форме порошка для инъекций включён в Перечень ЖНВЛС.

В случае инфекционных заболеваний, вызванных микроорганизмами не чувствительными к бензилпенициллину (в том числе при заболевании вирусами гриппа, не осложнённом бактериальной инфекцией) клиническое применение бензилпенициллина нерационально, а в связи с возможностью развития побочных эффектов от проводимого лечения антибиотиком — не вполне безопасно[1].

Angicilline, Capicillin, Cilipen, Conspen, Cosmopen, Cracillin, Crystacillin, Crystapen, Deltapen, Dropcillin, Falapen, Lanacillin, Novopen, Panavlon, Pentallin, Pharmacillin, Pradupen, Rentopen, Rhinocillin, Solupen, Solvocillin, Supracillina, Veticillin и другие[1].

Пробенецид снижает канальцевую секрецию бензилпенициллина, в результате повышается концентрация последнего в плазме крови, увеличивается период полувыведения. При одновременном применении с антибиотиками, оказывающими бактериостатическое действие (тетрациклин), уменьшается бактерицидное действие бензилпенициллина.

Биосинтез[править | править код]

Биосинтез пенициллина. На первой стадии происходит конденсация трёх аминокислот, на второй — окисление трипептида и образование двуциклического интермедиата — пенициллина N, на третьей — трансаминирование и образование пенициллина G

Биосинтез пенициллина осуществляется в три стадии:

  • На первой стадии происходит конденсация трёх аминокислот: L-α-аминоадиповой кислоты, L-цистеина, L-валина в трипептид.[14][15][16] Перед конденсацией в трипептид аминокислота L-валин превращается D-валин.[17][18] Указанный трипептид называется δ-(L-α-аминоадипил)-L-цистеин-D-валином (англ. ACV). Реакции конденсации и эпимеризации катализируются ферментами δ-(L-α-аминоадипил)-L-цистеин-L-валинсинтетазой (англ. ACVS) и синтетазой нерибосомных пептидов (англ. NRPS).
  • Вторая стадия биосинтеза пенициллина — это окисление линейной молекулы ACV в двуциклический интермедиат изопенициллин N ферментом изопенициилин N синтетазой (англ. IPNS), продуктом гена pcbC.[14][15] Изопенициллин N — очень слабый интермедиат, так как он не обладает противомикробной активностью.[17]
  • На заключительной стадии происходит трансаминирование ферментом изопенициллин N N-ацилтрансферазой, при этом α-аминоадипиловая боковая цепь изопенициллина N удаляется и заменяется на фенилуксусную кислоту. Фермент, катализирующий эту реакцию является продуктом гена penDE.[14]

Полный синтез[править | править код]

Химик Джон Шиэн (англ. Sheehan) в Массачусетском технологическом институте (англ. MIT) в 1957 году осуществил полный химический синтез пенициллина.[19][20][21] Шиэн приступил к изучению синтеза пенициллинов в 1948 году и в ходе исследований разработал новые методы синтеза пептидов, а также новые защитные группы.[21][22] Хотя метод синтеза, разработанный Шиэном не был пригоден для массового производства пенициллинов, один из интермедиатов в синтезе (6-аминопенициллановая кислота, англ. 6-APA) является ядром молекулы пенициллина.[21][23] Присоединение разных групп к ядру 6-APA позволило получить новые формы пенициллинов.

Производные[править | править код]

Выделение ядра молекулы пенициллина 6-APA, позволило получить новые полусинтетические антибиотики, обладающие лучшими свойствами, чем бензилпенициллин (биодоступность, спектр антимикробного действия, стабильность).

Первым важным полученным производным был ампициллин, который обладал более широким спектром антибактериальной активности, чем исходные препараты антибиотиков. Дальнейшие исследования позволили получить устойчивые к β-лактамазе антибиотики, в том числе, флуклоксациллин, диклоксациллин и метициллин. Эти антибиотики были эффективны против бактерий, синтезирующих бета-лактамазу, однако, неэффективны против устойчивого к метициллину золотистого стафиллококка (англ. MRSA), возникшего немного позднее.

  1. 1 2 3 4 5 М. Д. Машковский. Лекарственные средства. В двух частях. — 12-е изд., перераб. и доп. — М.: Медицина, 1993. — Т. II. — С. 245—251. — 688 с ил. с. — (Пособие для врачей). — 75 000 экз. — ISBN 5-225-02735-0.
  2. Garrod, L. P. Relative Antibacterial Activity of Three Penicillins (англ.) // British Medical Journal : journal. — 1960. — Vol. 1, no. 5172. — P. 527—529. — doi:10.1136/bmj.1.5172.527.
  3. Garrod, L. P. The Relative Antibacterial Activity of Four Penicillins (англ.) // British Medical Journal : journal. — 1960. — Vol. 2, no. 5214. — P. 1695—1696. — doi:10.1136/bmj.2.5214.1695. — PMID 13703756.
  4. Kasten, Britta; Reski, Ralf. β-lactam antibiotics inhibit chloroplast division in a moss (Physcomitrella patens) but not in tomato (Lycopersicon esculentum) (англ.) // Plant Physiology : journal. — American Society of Plant Biologists, 1997. — 30 March (vol. 150, no. 1—2). — P. 137—140. — doi:10.1016/S0176-1617(97)80193-9.
  5. ↑ МАНАССЕИН Вячеслав Авксентьевич (неопр.).
  6. ↑ ПОЛОТЕБНОВ Алексей Герасимович (неопр.).
  7. ↑ Медицинский музей и медицинская коммуникация. Сборник материалов V Всероссийской научно-практической конференции «Медицинские музеи России: состояние и перспективы развития». — Москва, 5—6 апреля 2018.
  8. ↑ Alexander Fleming – Time 100 People of the Century (неопр.). Time. — «It was a discovery that would change the course of history. The active ingredient in that mold, which Fleming named penicillin, turned out to be an infection-fighting agent of enormous potency. When it was finally recognized for what it is—the most efficacious life-saving drug in the world—penicillin would alter forever the treatment of bacterial infections.». Архивировано 16 апреля 2011 года.
  9. Haven, Kendall F. Marvels of Science : 50 Fascinating 5-Minute Reads (англ.). — Littleton, CO: Libraries Unlimited, 1994. — P. 182. — ISBN 1-56308-159-8.
  10. Мадхаван Г. Думай как инженер. — М.: Манн, Иванов и Фербер, 2016. См. главу 4.
  11. ↑ https://time.com/4250235/penicillin-1942-history/
  12. ↑ https://www.lib.niu.edu/2001/iht810139.html
  13. James, PharmD, Christopher W.; Cheryle Gurk-Turner, RPh. Cross-reactivity of beta-lactam antibiotics (англ.) // Baylor University Medical Center Proceedings. — Dallas, Texas: Baylor University Medical Center, 2001. — January (vol. 14, no. 1). — P. 106—107. — PMID 16369597.
  14. 1 2 3 Al-Abdallah, Q., Brakhage, A. A., Gehrke, A., Plattner, H., Sprote, P., Tuncher, A. Regulation of Penicillin Biosynthesis in Filamentous Fungi // Molecular Biotechnolgy of Fungal beta-Lactam Antibiotics and Related Peptide Synthetases (англ.) / Brakhage A. A.. — 2004. — P. 45—90. — ISBN 3-540-22032-1. — doi:10.1007/b99257.
  15. 1 2 Brakhage, A. A. Molecular Regulation of β-Lactam Biosynthesis in Filamentous Fungi (англ.) // Microbiology and Molecular Biology Reviews (англ.)русск. : journal. — American Society for Microbiology (англ.)русск., 1998. — Vol. 62, no. 3. — P. 547—585. — PMID 9729600.
  16. Baldwin, J. E., Byford, M. F., Clifton, I., Hajdu, J., Hensgens, C., Roach, P., Schofield, C. J. Proteins of the Penicillin Biosynthesis Pathway (неопр.) // Curr Opin Struct Biol.. — 1997. — № 7. — С. 857—864.
  17. 1 2 Fernandez, F. J., Fierro, F., Gutierrez, S., Kosalkova, K . Marcos, A. T., Martin, J. F., Velasco, J. Expression of Genes and Processing of Enzymes for the Biosynthesis of Penicillins and Cephalosporms (англ.) // Anton Van Lee : journal. — 1994. — September (vol. 65, no. 3). — P. 227—243. — doi:10.1007/BF00871951. — PMID 7847890.
  18. ↑ Baker, W. L., Lonergan, G. T. «Chemistry of Some Fluorescamine-Amine Derivatives with Relevance to the Biosynthesis of Benzylpenicillin by Fermentation». J Chem Technol Biot. 2002, 77, pp1283-1288.
  19. Sheehan, John C.; Henery-Logan, Kenneth R. The Total Synthesis of Penicillin V (англ.) // Journal of the American Chemical Society (англ.)русск. : journal. — 1957. — 5 March (vol. 79, no. 5). — P. 1262—1263. — doi:10.1021/ja01562a063.
  20. Sheehan, John C.; Henery-Logan, Kenneth R. The Total Synthesis of Penicillin V (англ.) // Journal of the American Chemical Society (англ.)русск. : journal. — 1959. — 20 June (vol. 81, no. 12). — P. 3089—3094. — doi:10.1021/ja01521a044.
  21. 1 2 3 E. J. Corey; John D. Roberts. Biographical Memoirs: John Clark Sheehan (неопр.). The National Academy Press. Дата обращения 28 января 2013. Архивировано 28 апреля 2013 года.
  22. Nicolaou, K.C.; Vourloumis, Dionisios; Winssinger, Nicolas; Baran, Phil S. The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century** (англ.) // Angewandte Chemie International Edition : journal. — 2000. — Vol. 39, no. 1. — P. 44—122. — doi:10.1002/(SICI)1521-3773(20000103)39:1<44::AID-ANIE44>3.0.CO;2-L. — PMID 10649349.
  23. ↑ Professor John C. Sheehan Dies at 76 (1 апреля 1992). Дата обращения 28 января 2013.

ru.wikipedia.org

Мадам Пенициллин. Как советский учёный изобрела аналог первого антибиотика | ОБЩЕСТВО:Люди | ОБЩЕСТВО

Создателем пенициллина считается британский бактериолог Александр Флеминг, одним из первых обнаруживший лечебные свойства плесени и опубликовавший своё открытие в 1929 году. Однако об антибактериальном эффекте грибка плесени Penicillium знали ещё во времена Авиценны, в XI веке. А в 70-е годы XIX века свойства плесени широко использовали российские медики Алексей Полотебнов и Вяче­слав Манассеин для лечения кожных заболеваний.

Тем не менее выделить из плесени лечебное вещество удалось только в 1929 году. Но и это всё ещё не был устойчивый пенициллин в чистом виде. А потому Нобелевскую премию в области физиологии и медицины в 1945-м Александр Флеминг разделил с Говардом Флори и Эрнстом Чейни. Учёные разработали методы очистки антибиотика и запустили производство пенициллина в США.

Между тем, как часто случается в истории, создательница советского пенициллина – выдающийся учёный-микробиолог Зинаида Ермольева, оказалась незаслуженно забытой. А ведь именно ей удалось не только создать качественный отечественный антибиотик, оказавшийся в 1,4 раза действеннее англо-американского, но и наладить его массовое производство в страшные для страны военные годы.

На что вдохновила музыка

Как вспоминала сама Зинаида Ермольева, на выбор профессии повлияла история смерти её любимого композитора - Петра Ильича Чайковского, который, как известно, умер от холеры. А потому борьба с этим страшным заболеванием стала делом всей её жизни. Окончив с золотой медалью Мариинскую женскую гимназию в Новочеркасске, юная Зинаида поступила на медицинский факультет Донского университета, по окончании которого в 1921-м осталась работать ассистентом на кафедре микробиологии.

При этом параллельно Ермольева заведовала отделением Северо-Кавказского бактериологического института.

Когда в 1922 году в Ростове-на-Дону вспыхнула эпидемия холеры, она, игнорируя возможность заражения, проводила исследования по изучению возбудителя этого смертельного заболевания. К тому же провела опаснейший эксперимент с самозаражением. В протоколе одного из них учёная писала: «Опыт, который едва не кончился трагически, доказал, что некоторые холероподобные вибрионы, находясь в кишечнике человека, могут превращаться в истинные холерные вибрионы, вызывающие заболевание».

Кстати, тогда вибрионы холеры были найдены в ростовском водопроводе. А исследования Зинаиды Виссарионовны Ермольевой послужили основой для разработки рекомендаций по хлорированию питьевой воды.

В 1922 году Зинаида Ермольева провела опаснейший эксперимент с самозаражением холерным вибрионом. Фото: Википедия

В 1925 году Зинаида Виссарионовна переехала в Москву, чтобы организовать и возглавить отдел в Биохимическом институте Наркомздрава. Скромный багаж учёного состоял из единственного чемодана с пятьюстами культурами холерных и холероподобных вибрионов.

Как спасти Сталинград

«Ермольева работала по двум направлениям: занималась изучением возбудителя холеры и разработкой отечественного препарата пенициллина, - рассказывает аведующая кафедрой микробиологии и вирусологии №2 Ростовского медуниверситета, доктор медицинских на­ук, профессор Галина Харсеева.  - В 1942-м фашистские оккупанты предприняли попытку заразить водоснабжение Сталинграда холерным вибрионом. Туда в срочном порядке направили десант, состоящий из эпидемиологов и микробиологов во главе с Зинаидой Виссарионовной Ермольевой. В склянках с собой они везли бакте­рио­фаги - вирусы, поражающие клетки возбудителя холеры. Эшелон Ермольевой попал под бомбёжку. Множество медикаментов бы­ло уничтожено».

Пришлось восстанавливать утраченные препараты. Сложнейшее микробиологическое производство наладили в подвале одного из зданий. Еже­дневно холерный фаг вместе с хлебом принимали 50 тысяч человек. Ермольева лично учила девушек-санитарок делать прививки. По радио читали статьи по профилактике желудочно-кишечных заболеваний. Ко­лодцы с водой тщательно хлорировали. Благодаря грамотно проведённым противоэпидемическим мероприятиям вспышку холеры в Сталинграде удалось предотвратить.

Оружие под названием «Крустозин» 

«В годы Великой Отечественной войны основное количество смертей раненых бойцов приходилось на гнойно-асептические осложнения. Бороться с ними тогда не умели. Препараты зарубежного пенициллина союзники нам не продавали», - продолжает рассказ Галина Харсеева.

Возглавлявшей тогда Всесоюзный институт экспериментальной медицины Ермольевой правительство поручило создать отечественный аналог антибиотика. И она это сделала. Так, в 1942 году появился первый советский антибактериальный препарат под названием «Крустозин», а уже в 1943-м его запустили в массовое производство.

«Использование этого лекарства в армии резко снизило смертность и заболеваемость, связанную с гнойной инфекцией. Практически до 80% раненых стали возвращаться в строй. Изобретённый Ермольевой препарат в конце 40-х годов исследовали зарубежные учёные и пришли к выводу, что по своей эффективности он превосходит заокеанский пенициллин. Тогда Зинаида Ермольева и получила почётное имя - Мадам Пенициллин», - добавила Галина Харсеева.

Изобретённый Ермольевой препарат в конце 40-х годов исследовали зарубежные учёные и пришли к выводу, что по своей эффективности он превосходит заокеанский пенициллин. Фото: Из личного архива  Зинаиды Ермольевой

Где взять плесень?

Существует легенда: в 1942 году к Зинаиде Виссарионовне обратился молодой генерал из близкого окружения Сталина. У него серьёзно болела маленькая дочка - у ребёнка очень долго держалась высокая температура. Врачи были бессильны, а генерал случайно узнал о новом препарате.

Ермольева ответила, что дать ему «Крустозин» она не может, так как лекарство не прошло клинических испытаний. Но генерал настаивал. И Ермольева пошла на риск. Девочка очнулась и даже узнала отца. Требовалось продолжить лечение. Но лекарства было очень мало.

Как вспоминала о тех днях сотрудница лаборатории Тамара Балезина, плесень для выработки препарата собирали везде, где только могли - на траве, в земле, на стенах бомбоубежища. В итоге ребёнка удалось спасти. В благодарность генерал предложил Ермольевой новую квартиру. Но учёная отказалась и попросила лишь об одном - спасти из тюрьмы бывшего, но всё ещё горячо любимого репрессированного мужа - вирусолога Льва Зильбера.

Согласно другой версии, с прошением помиловать экс-супруга Ермольева обращалась к Сталину.

- Но ведь он женат на другой и к вам не вернётся, - удивился тот.

- Лев Зильбер нужен науке, - ответила Зинаида Виссарионовна.

В марте 1944 года, накануне 50-летия, Льва Зильбера освободили, по-видимому, благодаря письму о невиновности учёного, направленному на имя Сталина, которое подписал ряд известных в стране людей. Позже ему вручили Сталинскую премию.

Зинаида Ермольева родилась в 1898 г. в Волгоградской области. Окончила с золотой медалью Мариинскую женскую гимназию в Новочеркасске и медицинский факультет Донского университета. Занималась изучением холеры, открыла светящийся холероподобный вибрион, носящий её имя. В 1942 г. впервые в СССР получила пенициллин. С 1952 года и до конца жизни Зинаида Ермольева возглавляла кафедру микробиологии и лабораторию новых антибиотиков ЦИУВ (Российская медицинская академия последипломного образования). Автор более 500 научных работ и шести монографий. Стала прототипом героини романа Вениамина Каверина «Открытая книга». Умерла в 1974 г.

rostov.aif.ru

Пеницилл — Википедия

Пеници́лл[1][2], также пеници́ллий[3], пеници́ллиум[1] (лат. Penicillium), — род грибов-аскомицетов, относящийся к семейству Aspergillaceae порядка Эуроциевые (Eurotiales).

Один из наиболее широко распространённых в мире родов грибов, представители которого обнаруживаются в самых различных местах — в почве, на растениях, в воздухе, в помещениях, на пищевых продуктах, в морях. С эколого-трофической точки зрения, виды рода — сапротрофы и слабые паразиты растений.

Отдельные виды используются в сыроварении — Penicillium roqueforti и P. camemberti.

К роду относят продуцентов антибиотика пенициллина — среди них P. chrysogenum, являющийся одним из самых распространённых грибов в мире. Другой крайне широко распространённый вид рода — P. citrinum.

У большинства видов преобладает анаморфная гифомицетовая стадия, образующая конидиогенные клетки с цепочками конидий. Телеоморфы, как правило (и если известны), образуют жёсткие клейстотеции с восьмиспоровыми асками. Ранее к Penicillium относились исключительно анаморфные стадии грибов, в то время как телеоморфы относились к родам Eupenicillium и Talaromyces. После отмены правила раздельной номенклатуры для различных стадий жизненного цикла грибов первое из этих названий перешло в синонимику Penicillium, а ко второму роду стали относить также ряд родственных видов, известных только по анаморфной стадии и ранее включаемых в Penicillium. К 2018 году в роде описано свыше 350 признанных видов.

Основы систематики рода заложили в 1930—1940-х годах американские микологи-микробиологи Чарлз Том и Кеннет Рэйпер. В разработанной ими системе разделение рода на секции базируется на сложности строения конидиеносцев — так называемой ярусности кисточек с конидиями. Этот подход использовался и в более поздних системах классификации, поскольку оказывается удобным для определения видов по морфологическим признакам. Молекулярно-филогенетические исследования рубежа XX—XXI веков, однако, показали, что этот признак в сравнительно редких случаях коррелирует с эволюционным родством видов.

Характеристика колоний и микроморфология[править | править код]

Вегетативный мицелий обильный, полностью погружённый в агар или хотя бы частично возвышающийся над ним, формирует густые плотные колонии. Гифы неправильно ветвящиеся, септированные, обычно неокрашенные[4].

Условно выделяются четыре типа колоний пенициллов по макроморфологии. По Рэйперу и Тому, у бархатистых (англ. velvety, velutinous) колоний все или почти все вегетативные гифы погружены в субстрат; конидиеносцы густой однородной массой отходят от поверхности субстрата, придавая колониям бархатисто-зернистый облик. Войлочные (англ. lanose), или шерстистые (floccose), колонии характеризуются наличием развитого воздушного вегетативного мицелия, во время роста колоний образующего стерильный, как правило, белый край; конидиеносцы представляют собой ответвления от стерильных воздушных гиф. Колонии с мицелиальными тяжами (англ. funiculose) имеют воздушный мицелий, состоящий из сплетений гиф, как правило, восходящих над субстратом; конидиеносцы отходят от этих сплетений, также от отдельных стерильных гиф. Пучковатые (англ. fasciculate) колонии характеризуются аггрегированием простых конидиеносцев в пучки, создающим видимость крупной зернистости колонии; колонии с коремиями (coremiform) — крайний случай пучковатости, для которого характерны крупные пучки конидиеносцев с общей споровой массой, приподнятой на стерильной ножке[3][5].

Конидиеносцы образуются на недифференцированных гифах субстратного, поверхностного или воздушного мицелия, 2—5 мкм толщиной, тонкостенные, у некоторых видов с верхушечным вздутием, обычно гиалиновые, редко коричневые. Конидиеносцы септированные, на конце несут так называемую кисточку (лат. penicillus) — мутовку фиалид (одноярусная кисточка) или мутовку метул, несущих по мутовке конидиогенных клеток каждая (двухъярусная кисточка). Сам конидиеносец может дополнительно ветвиться, в результате образуются трёх- и четырёхъярусные (иногда и с большим числом ярусов) кисточки. У некоторых видов конидиеносцы заканчиваются одиночными конидиогенными клетками. Конидиогенные клетки — фиалиды (иногда называемые стеригмами) — фляговидные, обычно не превышают 15 мкм в длину. Конидии (фиалоконидии) одноклеточные, у большинства видов 2—5 мкм в наибольшем измерении, образуются базипетально на суженных в шейку верхушках фиалид. Цепочки конидий могут быстро распадаться либо длительное время сохраняться, также могут переплетаться между собой либо оставаться параллельными, образуя колонки. Конидии в массе различных оттенков зелёного, реже белые, коричневые, оливковые[4].

Некоторые виды образуют склероции в виде жёстких сплетений толстостенных гиф, представляющие собой недоразвитые клейстотеции[6].

Плодовые тела известны у сравнительно небольшого числа (около 40) видов, представляют собой видимые невооружённым глазом (100—500 мкм в диаметре) клейстотеции, шаровидные или почти шаровидные до удлинённых или неправильных, очень жёсткие, сохраняющиеся таковыми в течение недель и даже месяцев. Созревают от центра к периферии. Окраска плодовых тел белая, жёлтая, оранжевая, коричневая, редко чёрная или красная. Аски унитуникатные, обычно с 8 спорами, почти шаровидные до эллипсоидальных или грушевидных, 5—15 мкм длиной. Аскоспоры одноклеточные, широкоэллипсоидальные, линзовидные или (почти) шаровидные, 2—5 мкм в диаметре, гладкие или шероховатые, с неглубокой экваториальной бороздой или с двумя в той или иной степени выраженными параллельными экваториальными гребнями[3][4][6][7]. Отличное от других видов строение телеоморфы характерно для Penicillium eremophilum (анаморфа у этого вида неизвестна): аски у этого вида двуспоровые, клейстотеции тонкостенные[8][9].

Известны гомоталличные и гетероталличные виды, в геноме их гаплоидных клеток содержится один или два соответственно аллеля локуса MAT — MAT1-1 и (или) MAT1-2, — определяющих типы спаривания[10][11].

Расчётный размер генома у разных видов рода варьирует в довольно широких пределах — от 25 до 36 Мб. Отмечается, что Penicillium digitatum, способный поражать только плоды цитрусовых, обладает самым маленьким геномом из слабо фитопатогенных видов — 25,7 Мб. Геном патогена плодов косточковых и семечковых культур P. expansum — наибольший среди потенциальных фитопатогенов, около 31 Мб. Наиболее крупные геномы в целом — у P. camemberti и P. commune[10].

Культивирование на питательных средах[править | править код]

В качестве стандартных сред для изучения морфологии пенициллов на чашках Петри приняты агар Чапека с дрожжевым экстрактом (Czapek Yeast Extract Agar, CYA) и агар с солодовым экстрактом[de] (Malt Extract Agar, MEA). В отдельных исследованиях также используются среда Чапека[en] (Czapek Agar, CZA), овсяный агар (Oatmeal Agar, OA), креатиново-сахарозный агар (Creatine Sucrose Agar, CREA), агар с дрожжевым экстрактом и сахарозой (Yeast Extract Sucrose Agar, YES), дихлоран-глицериновый агар[de] (Dichloran 18 % Glycerol agar, DG18), агар с солодовым экстрактом в модификации Блексли, CYA с 5 % поваренной соли (CYAS) и другие[12].

Агаризованная среда Чапека использовалась в качестве основной для описания пенициллов в работах Рэйпера и Тома (1949), Пидопличко (1972), Рамиреса (1982). YES используется для определения характеристик, связанных со вторичными метаболитами грибов. Овсяный агар наиболее эффективен для стимулирования полового размножения у пенициллов. Изменение цвета среды под колониями на CREA, связанное с выделением кислот и оснований (и вообще способность или неспособность расти на этой среде, где в качестве источника азота используется креатин), помогает различить некоторые близкородственные виды. DG18 и CYAS позволяют характеризовать рост грибов при пониженной доступности воды[12].

Для развития нормальной окраски спороношения в питательных средах необходимо наличие следовых количеств сульфата цинка и сульфата меди[12].

Морфологически сходные группы грибов[править | править код]

Кисточковидно разветвлённые конидиеносцы с фиалидами, образующими конидии в базипетальных цепочках, характерны для целого ряда анаморф. Эти роды фенотипически отличимы от Penicillium по характеру ветвления конидиеносцев, форме фиалид, строению плодовых тел телеоморфы, окраске колоний.

Так, анаморфы грибов, относимых к роду Hamigera, образуют фляговидные или цилиндрические фиалиды, часто расположенные на конидиеносцах неправильно, и конидии, в массе окрашенные в коричневые тона; телеоморфы представлены мягкими аскомами из рыхлопереплетённых гиф[13].

Анаморфы Talaromyces отличаются от анаморф Penicillium обычно симметричными двухъярусными кисточками с ланцетными фиалидами; окраска спороношения часто более тёмных зелёных тонов, чем у Penicillium. Телеоморфы этого рода образуют мягкие плодовые тела из переплетённых гиф[13].

У Rasamsonia кисточки двухъярусные и трёхъярусные, с цилиндрическими фиалидами, суженными к обоим концам; конидии в массе коричневые. Плодовые тела мягкие, с тонкими стенками. Виды этого рода часто являются термофильными[13].

Sagenomella с белым, серым, зеленоватым, коричневым конидиальным спороношением, неправильно расположенными, лишь иногда собранными в мутовки, ланцетными фиалидами. Плодовые тела также мягкие, тонкостенные[13].

Trichocoma paradoxa образует двухъярусные и трехъярусные кисточки с цилиндрическими, суженными к обоим концам фиалидами, конидиальное спороношение в коричневых тонах. Плодовые тела мягкие, крупные, до 2 см в диаметре[13].

В роде Paecilomyces конидиальное спороношение в коричневых тонах, конидиеносцы неправильно мутовчато разветвлённые, фиалиды с широким основанием и длинной узкой шейкой. Плодовые тела практически не оформленные[13].

К Thermomyces относят грибы, у которых анаморфа образует одноярусные и двухъярусные кисточки либо одиночными хламидоспороподобными конидиями. Окраска спороношения зелёная. Термофилы, образующие жёсткие клейстотеции[13].

Спороносящий пеницилл на плоде мандарина

Большинство видов — исконно почвенные сапротрофы, меньшая доля — оппортунистические паразиты растений, поражающие ослабленные всходы и длительно хранящиеся плоды растений. Встречаются и на прочих органических субстратах, пищевых продуктах[3][6].

В качестве наиболее распространённых видов рода указываются Penicillium chrysogenum, P. citrinum, P. digitatum, P. griseofulvum и P. hirsutum[14].

Отмечается, что пенициллы, как правило, составляют до 67 % преобладающих видов грибов во всех биогеоценозах с естественной растительностью (при этом общее разнообразие достигает 50—75 и более видов в 1 г почвы). Разнообразие пенициллов максимальное в почвах пустошей и пойменных лесов и минимально в почвах пустынь и тундр. Многие виды рода распространены повсеместно, однако часто выделяются только из определённых групп биогеоценозов. Так, Penicillium restrictum — стабильный индикатор почв травянистых сообществ по всему миру, P. montanense и P. lagena обычны в хвойных и хвойно-широколиственных лесах[15]

Некоторые виды способны развиваться при pH = 1,5—3, многие виды — при pH = 9—10 и выше. Penicillium roqueforti может медленно расти при концентрации кислорода 0,5 %. P. expansum нормально растёт при 2 % O2. Большинство видов, однако, требует более высоких концентраций кислорода. Ряд видов рода — умеренные ксерофилы, большинство видов растут при aw = 0,82, некоторые виды — и при aw = 0,78, P. eremophilum — облигатный ксерофил, не развивающийся при aw больше 0,90[8]. Большинство видов способны развиваться при температуре ниже 5 °C, некоторые — при 0 °C[16]. Описано несколько видов, относящихся к категории психротолерантов: в частности, Penicillium jamesonlandense и P. ribium. P. jamesonlandense плохо растёт при 25 °C, его температурный оптимум — 17—18 °C[14].

Порча пищевых продуктов[править | править код]

Спороношение пеницилла на плоде апельсина

Пенициллы — весьма обыкновенные плесневые грибы, встречающиеся на разнообразных пищевых продуктах. Как правило, виды этого рода вызывают менее существенные поражения пищевых продуктов, чем виды аспергилла. Многие виды рода — почвенные обитатели, попадающие на пищевые продукты только в качестве загрязнителей. Для других видов пищевые продукты являются наиболее обычным субстратом для развития. Пенициллы, встречающиеся на пищевых продуктах, разделяются на три группы: встречающиеся на свежей пище, наиболее часто — на плодах растений; поражающие зерно после уборки и во время высушивания; и встречающиеся на переработанных продуктах питания[17].

Представители рода — наиболее часто встречающиеся плесени, поражающие плоды яблони, груши, цитрусовых. На яблоках и грушах нередко поселяется Penicillium expansum, вызывающий широко распространяющуюся гниль коричневого цвета. Этот вид обнаруживается также на плодах земляники, томата, винограда, авокадо, манго. Выделяет токсин патулин. P. solitum встречается на яблоках и грушах, однако более редок. P. digitatum часто поражает плоды апельсина, реже — других цитрусовых, образуя гниль коричневого цвета. На лимонах наиболее часто встречается P. italicum, образующий голубое или голубовато-зелёное спороношение на плодах. Близкий вид P. ulaiense также встречается на плодах апельсина и лимона[17].

Penicillium brevicompactum — неспецифичный слабый патоген, иногда вызывающий гниение яблок, винограда, грибов, маниока, картофеля. Выделяет токсин микофеноловую кислоту. P. aurantiogriseum и близкие виды выделяются с разнообразных свежих растительных продуктов, синтезируют слабые токсины пеницилловую кислоту, рокфортин C, веррукозидин. Поражения чеснока вызывает вид P. allii. P. oxalicum, выделяющий секалоновую кислоту D, известен как патоген ямса и маниока[17].

Penicillium verrucosum, выделяющий охратоксин А, — наиболее экономически значимый грибок среди представителей рода в Европе, поражает зерновые культуры. В Японии на зёрнах риса изредка встречается P. citreonigrum, выделяющий цитреовиридин[17].

Порчу сыра наиболее часто вызывает Penicillium commune, представляющий собой естественную форму используемого в сыроделии вида P. camemberti. Также на сырах, производимых без использования этого вида, в качестве агента порчи может появляться P. roqueforti. Реже на сыре встречаются P. brevicompactum, P. chrysogenum, P. glabrum, P. expansum, P. solitum, P. verrucosum, P. viridicatum[17].

На маргарине и различных вареньях иногда встречается вид Penicillium corylophilum[17].

Токсичные метаболиты[править | править код]

Впервые токсичность гриба, достоверно относящегося к пенициллам, была задокументирована в 1913 году, когда Карл Олсберг и Отис Блэк наблюдали токсическое действие экстракта Penicillium puberulum (штамм NRRL 1889, использованный ими, относится к P. cyclopium[18]), выделенного с заплесневелых початков кукурузы, на животных при введении в количествах 200—300 мг на кг массы[19].

В обзоре 1981 года 85 видов рода (включая Talaromyces) указывались как продуценты токсичных веществ. Несомненно, многие из сообщений, на которых основан этот обзор, связаны с ошибочным определением видов. В 1991 году были обобщены сведения о 27 токсичных метаболитах, продуцируемых пенициллами. Из них 17 были названы потенциально опасными токсинами грибов, встречающихся на пищевых продуктах (2006)[19].

В 2007 году Джон Питт перечислил 9 микотоксинов, продуцируемых пенициллами, наиболее потенциально опасных для человека[19]:

Название токсина Токсичность (испытуемое животное, ЛД50, способ введения) Продуценты
Цитреовиридин мыши, 7,5 мг/кг, внутрибрюшинно
мыши, 20 мг/кг, перорально
Penicillium citreonigrum
Penicillium ochrosalmoneum
Цитринин мыши, 35 мг/кг, внутрибрюшинно
мыши, 110 мг/кг, перорально
Penicillium citrinum
Penicillium expansum
Penicillium verrucosum
Циклопиазоновая кислота крысы, 2,3 мг/кг, внутрибрюшинно
крысы-самцы, 36 мг/кг, перорально
крысы-самки, 63 мг/кг, перорально
Penicillium camemberti
Penicillium commune
Penicillium chrysogenum
Penicillium griseofulvum
Penicillium hirsutum
Penicillium viridicatum
Охратоксин А молодые крысы, 22 мг/кг, перорально Penicillium verrucosum
Патулин мыши, 5 мг/кг, внутрибрюшинно
мыши, 35 мг/кг, перорально
Penicillium expansum
Penicillium griseofulvum
Penicillium roqueforti
Penicillium vulpinum
Пенитрем A[en] мыши, 1 мг/кг, внутрибрюшинно Penicillium crustosum
Penicillium glandicola
PR-токсин мыши, 6 мг/кг, внутрибрюшинно
крысы, 115 мг/кг, перорально
Penicillium roqueforti
Рокфортин C мыши, 340 мг/кг, внутрибрюшинно Penicillium chrysogenum
Penicillium crustosum
Penicillium roqueforti
Секалоновая кислота D[en] мыши, 42 мг/кг, внутрибрюшинно Penicillium oxalicum

Наиболее известным и опасным токсином, продуцируемом видом рода, Питт назвал охратоксин А. Относится к категории 2B веществ, вероятно канцерогенных для человека, согласно классификации Международного агентства по изучению рака. Токсин действует на почки, возможно, связан с возникновением очагов балканской нефропатии[en]. Первоначально вещество было выделено из культуры Aspergillus ochraceus, затем было показано, что его часто продуцируют штаммы A. carbonarius и редко — A. niger. Впоследствии обнаружено, что это вещество синтезируют Penicillium verrucosum и близкий вид P. nordicum. P. verrucosum встречается на растениях ячменя и пшеницы в умеренных регионах мира — в Скандинавии, Центральной Европе, Западной Канаде. В 1986 году опубликовано исследование образцов ячменя из Дании с ферм, на которых свиньи страдали заболеванием почек. Из 70 образцов в 67 было обнаружено множество грибов P. verrucosum, из 66 образцов был выделен охратоксин А[19].

По-видимому, с зерном риса, поражённым Penicillium citreonigrum, связано широкое распространение острой формы бери-бери в Японии во второй половине XIX века. С 1910 года это заболевание стало встречаться во много раз реже, что совпало с введением жёсткой государственной инспекции рисового зерна, значительно снизившей продажу заплесневелого риса. Впоследствии поражённый P. citreonigrum рис в Юго-Восточной Азии обнаруживался редко[19].

PR-токсин и рокфортин C синтезируются штаммами Penicillium roqueforti, используемого в сыроделии. Показана связь рокфортина C с гибелью собак в Канаде. Сильно ядовитый PR-токсин быстро разлагается при хранении сыра, а токсин с достаточно большой летальной дозой 50 % рокфортин C обнаруживается и в готовых сырах. Об отравлениях человека PR-токсином или рокфортином C, связанных с употреблением в пищу сыра, не известно[19].

Использование в пищевой промышленности[править | править код]

Два вида рода часто используются в сыроделии. Для приготовления голубых сыров (рокфора, стилтона, горгондзолы, блё д'Овернь, кабралеса, данаблю и других) используется культура Penicillium roqueforti. Этот вид наиболее устойчив к продуктам молочнокислого брожения, однако способен развиваться только при небольшой концентрации поваренной соли. Грибок заселяется в отверстия в сыре, создаваемые с помощью металлических штырей, через 2—3 недели начинает интенсивно спороносить, предавая сыру сине-зелёную окраску (иногда сине-зелёный пигмент выделяется и мицелием гриба)[20].

При производстве белых сыров с плесенью (камамбер, бри, гамалуст) после первичной ферментации молочнокислыми бактериями внутри сыра начинается развитие дрожжевых грибов, а на поверхность сыра заселяется грибок P. camemberti[20].

Салями и другие сухие колбасы в ряде стран Европы (Италии, Румынии, Венгрии, Швейцарии, Испании, Франции) обычно подвергаются ферментации грибом Penicillium nalgiovense, реже — P. chrysogenum и описанным в 2015 году P. salamii[21]. Эти виды — одни из наиболее солеустойчивых плесневых грибов, их рост обычно препятствует появлению нежелательных плесневых грибков на ферментированных колбасах. P. nalgiovense выделяет протеолитические и липолитические ферменты, способствующие улучшению консистенции колбас, а образующийся при разложении белка аммиак дополняет аромат и снижает кислотность продукта[20].

Использование для производства ферментов[править | править код]

Целый ряд штаммов пенициллов используется в промышленности для синтеза ферментов. Так целлюлазы некоторых штаммов-мутантов оказываются сравнимыми по эффективности со штаммами наиболее активно используемого в промышленности вида Trichoderma reesei. Увеличенным производством целлюлаз характеризуются отдельные штаммы Penicillium brasilianum, P. brevicompactum, P. citrinum, P. chrysogenum, P. crustosum, P. echinulatum, P. expansum, P. glabrum, P. janthinellum, P. oxalicum, P. persicinum[22]. Ряд штаммов, выделяющих внекеточные хитиназы, (например, штамм вида P. ochrochloron) может использоваться для биологического контроля и производства грибных протопластов[23].

Использование в медицине[править | править код]

Структурная формула пенициллина G

Среди видов рода известно множество продуцентов природных лекарственных препаратов, в том числе антибиотиков. Свойство зелёных плесеней подавлять бактериальный рост было впервые отмечено в 1868—1872 годах В. А. Манассеиным и А. Г. Полотебновым[2]. Первый известный науке бактерицидный антибиотик, активность которого была продемонстрирована Александром Флемингом в 1928 году, — пенициллин, продуцируется пенициллами, относящимися к секции Chrysogena. Технология очистки и промышленного производства пенициллина была разработана группой под руководством Х. Флори и Э. Чейна в 1941 году. В СССР пенициллин был выделен в 1942 году З. В. Ермольевой[2]. Вещества группы пенициллинов обладают активностью по отношению к грамотрицательным и многим грамположительным бактериям, ингибируя синтез клеточной стенки[24]. В 2011 году штамм, с которым работал Флеминг, в связи с пересмотром систематики этой группы пенициллов на основании полифазного подхода, был отнесён к виду Penicillium rubens, хотя ранее причислялся P. chrysogenum (P. notatum)[25].

Структурная формула гризеофульвина

Гризеофульвин[en] был впервые выделен из мицелия штамма Penicillium griseofulvum А. Оксфордом, Х. Райстриком и П. Симонартом в 1938 году. Исследователи охарактеризовали этот метаболит пеницилла с химической точки зрения, описали несколько его производных. В 1946 году П. Брайен, П. Кёртис и Х. Хемминг описали нарушения роста гиф фитопатогена Botrytis allii под действием некоего «фактора искривления», вырабатываемого культурами Penicillium janczewskii. Годом позднее Дж. Гроув и Дж. Макгоуэн показали, что «фактор искривления» идентичен описанному ранее гризеофульвину. В 1958 году Дж. Джентлз в экспериментах с морскими свинками продемонстрировал эффективность гризеофульвина против грибов-дерматофитов. Гризеофульвин обладает неспецифичным фунгистатическим действием[20][26].

Структурная формула микофеноловой кислоты

В 1893—1896 годах итальянский врач Бартоломео Госио[en] выделил с заплесневелых зёрен кукурузы грибок Penicillium brevicompactum (назвав его P. glaucum) и продемонстрировал подавление развития Bacillus anthracis неизвестным метаболитом этого грибка. В 1913 году Олсберг и Блэк повторно получили это вещество из культуры штамма, определённого как P. stoloniferum, и назвали его микофеноловой кислотой[en]. Микофеноловая кислота — первое антибиотическое вещество грибкового происхождения, полученное в кристаллическом виде. Обладает антибактериальным, противогрибковым, противовирусным, противоопухолевым, противопсориазным, иммунодепрессантным действием, однако распространения в качестве антибиотика не получила, поскольку токсична. 2-Морфолиноэтиловый эфир микофеноловой кислоты (более легко усвояемое пролекарство, в организме гидролизующееся до микофеноловой кислоты) используется в качестве иммунодепрессанта при пересадке почек, сердца, печени. Это вещество также выделяется видом P. echinulatum[20][27].

Мевастатин[en] — первый известный науке статин. Получен в 1973 году в качестве метаболита Penicillium citrinum японским фармакологом Акиро Эндо. В 1976 году А. Браун выделил это же вещество из культуры P. brevicompactum, назвав его компактином. Эндо показал эффективность мевастатина в экспериментах с курицами, собаками и обезянами. Акира Ямамото из Осакского университета успешно применял небольшие дозы мевастатина для лечения пациентов с семейной гиперхолестеринемией, однако дальнейшего распространения препарат не нашёл: в 1980-х годах было показано, что при долговременном приме

ru.wikipedia.org

Спасительная плесень: история создания пенициллина | Здоровая жизнь | Здоровье

«Когда я проснулся на рассвете 28 сентября 1928 года, я, конечно, не планировал революцию в медицине своим открытием первого в мире антибиотика или бактерии-убийцы», — эту запись в дневнике сделал Александр Флеминг, человек, который изобрёл пенициллин.

Идея использовать микробов в борьбе с микробами появилась ещё в XIX веке. Учёным уже тогда было ясно, что чтобы бороться с раневыми осложнениями, надо научиться парализовать микробов, вызывающих эти осложнения, и что убить микроорганизмы можно с их же помощью. В частности, Луи Пастер открыл, что бациллы сибирской язвы погибают под действием некоторых других микробов. В 1897 году Эрнест Дучесне использовал плесень, то есть свойства пенициллина, для лечения тифа у морских свинок.

Фактически датой изобретения первого антибиотика является 3 сентября 1928 года. К этому времени Флеминг уже был известен и имел репутацию блестящего исследователя, он занимался изучением стафилококков, но его лаборатория часто была неопрятной, что и стало причиной открытия.

Пенициллин. Фото: www.globallookpress.com

3 сентября 1928 года Флеминг вернулся в свою лабораторию после месяца отсутствия. Собрав все культуры стафилококков, учёный заметил, что на одной пластине с культурами появились плесневые грибы, а присутствовавшие там колонии стафилококков были уничтожены, в то время как другие колонии — нет. Флеминг отнёс грибы, выросшие на пластине с его культурами, к роду пеницилловых, и назвал выделенное вещество пенициллином.

В ходе дальнейших исследований Флеминг заметил, что пенициллин воздействует на такие бактерии, как стафилококки и многие другие возбудители, которые вызывают скарлатину, пневмонию, менингит и дифтерию. Однако выделенное им средство не помогало от брюшного тифа и паратифа.

Доклад о своём открытии Флеминг опубликовал в 1929 году в Британском журнале экспериментальной патологии.

Продолжая свои исследования, Флеминг обнаружил, что работать с пенициллом трудно, производство происходит медленно, кроме этого, пенициллин не может существовать в теле человека достаточно долго, чтобы убивать бактерии. Также учёный не мог извлечь и очистить активное вещество.

До 1942 года Флеминг совершенствовал новый препарат, но до 1939 года вывести эффективную культуру так и не удалось. В 1940 году немецко-английский биохимик Эрнст Борис Чейн и Хоуард Уолтер Флори, английский патолог и бактериолог, активно занимались попыткой очистить и выделить пенициллин, и спустя некоторое время им удалось произвести достаточно пенициллина для лечения раненых.

В 1941-м лекарство удалось накопить в достаточных масштабах для эффективной дозы. Первым человеком, которого удалось спасти с помощью нового антибиотика, был 15-летний подросток с заражением крови.

В 1945 году Флемингу, Флори и Чейну была присуждена Нобелевская премия по физиологии и медицине «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях».

Фото: www.globallookpress.com

Значение пенициллина в медицине

В разгар Второй мировой войны в США производство пенициллина уже было поставлено на конвейер, что спасло от гангрены и ампутации конечностей десятки тысяч американских и союзнических солдат. Со временем метод производства антибиотика был усовершенствован, и с 1952 года сравнительно дешёвый пенициллин стал применяться практически в мировых масштабах.

При помощи пенициллина можно вылечить остеомиелит и пневмонию, сифилис и родильную горячку, предотвратить развитие инфекций после ранений и ожогов — раньше все эти заболевания были смертельными. В ходе развития фармакологии были выделены и синтезированы антибактериальные препараты других групп, и когда были получены другие виды антибиотиков, перестал быть приговором и туберкулёз.

Лекарственная устойчивость

На несколько десятилетий антибиотики стали почти панацеей от всех болезней, но ещё сам первооткрыватель Александр Флеминг предупреждал, что не стоит использовать пенициллин, пока заболевание не будет диагностировано, и нельзя использовать антибиотик в течение короткого времени и в совсем малых количествах, так как при этих условиях у бактерий развивается устойчивость.

Когда в 1967 году был выявлен пневмококк, не чувствительный к пенициллину, а в 1948 году были обнаружены устойчивые к антибиотику штаммы золотистого стафилококка, учёным стало понятно, что бактерии приспосабливаются к лекарствам.

«Открытие антибиотиков было величайшим благом для человечества, спасением миллионов людей. Человек создавал всё новые и новые антибиотики против разных возбудителей инфекций. Но микромир сопротивляется, мутирует, микробы приспосабливаются. Возникает парадокс — люди разрабатывают новые антибиотики, а микромир вырабатывает своё сопротивление», — рассказала старший научный сотрудник Государственного научно-исследовательского центра профилактической медицины, кандидат медицинских наук, эксперт «Лиги здоровья нации» Галина Холмогорова.

По мнению многих экспертов, в том, что антибиотики теряют свою эффективность в борьбе с заболеваниями, во многом виноваты и сами пациенты, не всегда принимающие антибиотики строго по показаниям или в необходимых дозах.

«Проблема резистентности исключительно велика и затрагивает всех. Она вызывает большую тревогу учёных, мы можем вернуться в доантибиотиковую эру, потому что все микробы станут резистентны, ни один антибиотик не будет действовать на них. Наши неумелые действия привели к тому, что мы можем оказаться без очень мощных лекарств. Лечить такие страшные болезни, как туберкулёз, ВИЧ, СПИД, малярия, будет просто нечем», — пояснила Галина Холмогорова.

Именно поэтому к лечению антибиотиками нужно относиться очень ответственно и соблюдать ряд простых правил, в частности:

– никогда не принимать антибиотики без рекомендации врача;

– не прерывать курс лечения, даже если вам стало лучше;

– помнить, что антибиотики не помогают при вирусных инфекциях.

Читайте в соцсетях!

aif.ru

Пенициллин: история открытия и применение в военные годы

За всю историю человечества не было другого лекарства, которое спасло бы столько жизней. В самом начале войны многие солдаты умирали не от ран, а от заражения крови. Пенициллин исцелил тысячи бойцов, которых считали безнадежными. История его открытия похожа на детектив, развязка которого подарила человечеству первый антибиотик, продливший продолжительность жизни примерно на 30 лет.

В 1928 году британский микробиолог Александр Флеминг обнаружил плесень, которая подавляла рост культуры стафилококков. Эта плесень относилась к редкому виду грибов рода Penicillium — P. Notatum.

Долгие годы специалисты пытались создать удобный для практического использования препарат на основе грибка, но безуспешно. Активное вещество лабораторной плесени не только с трудом поддавалось очистке, но и оказывалось нестабильным. Лишь в 1940 году в журнале The Lancet появилась первая статья об эффективном антибиотике — пенициллине. В условиях войны у Англии не было возможности разрабатывать технологию промышленного производства, и специалисты поняли: надо отправляться в США. Так в 1941 году фронт исследовательской работы переместился в Америку.

Западный фронт

Сама поездка оказалась нервной: было жарко, а плесневые грибы не выдерживают высокой температуры — их могли не довезти. В США перед учеными встала другая проблема: возможность промышленного производства пенициллина. Научные специалисты общались со многими учеными и фабрикантами, и в итоге в 1941 году обосновались в лаборатории города Пеории штата Иллинойс. Американские исследователи предложили новую питательную среду для выращивания плесневых грибов — кукурузный экстракт, которого в этом регионе США было много. Он оказался более чем пригодным для исследовательских целей.

Была еще одна задача — найти наиболее «продуктивный» штамм грибка. В лабораторию присылали образцы плесени со всего мира, но нужной среди них не было. Искали и на месте: наняли женщину, которая покупала заплесневелые продукты, — ее прозвали «плесневой Мэри».

В один прекрасный летний день 1943 года Мэри принесла в лабораторию полусгнившую дыню, а на ней — золотистую плесень Penicillium Chrysogenum, которая и оказалась именно той, что нужна была ученым. Из плесени получилось выделить самый эффективный штамм, и при этом его производство оказалось очень выгодным: стоимость лечения одного случая сепсиса снизилась с 200 до 6,5 доллара. Сегодняшний пенициллин — это потомок той самой плесени.

Наконец, председатель научно-исследовательского медицинского совета США Альфред Ричардс взял под крыло организацию производства — финансирование поступило через президента США Рузвельта. Первый завод построили меньше чем за год, и в течение первого года его работы производство пенициллина выросло в 100 раз.

В армии союзников антибиотики начали использовать в июле 1943 года во время высадки на Сицилии — случаи смерти от гангрены прекратились. По некоторым данным, с высадкой в Нормандии в июне 1944 года медлили не только по политическим соображениям, но и из-за опасений, что пенициллина не хватит.

Восточный фронт

Советские специалисты — Зинаида Виссарионовна Ермольева, директор Всесоюзного института экспериментальной медицины (ВНИЭМ) и ее помощница Тамара Иосифовна Балезина — при лечении ранений боролись с тем, что многие пациенты умирали не от ран, а от заражения крови бактериальными инфекциями. Ермольева, конечно, знала, что в 1929 году Флеминг сформулировал идею получения пенициллина, но выделить его в чистом виде так и не смог. По одной из версий — недоказанной — сведения о препарате от сепсиса Ермольевой передали советские разведчики. Известно, что Зинаида Виссарионовна в начале войны обратилась через Наркомздрав к англичанам с просьбой предоставить образец для экспериментов, однако ответа пришлось ждать слишком долго. Научные специалисты начали искать собственный штамм.

«Устав от напрасного ожидания, весной 1942 года я с помощью друзей стала собирать плесени из самых различных источников, — писала Балезина в своих воспоминаниях. — Те, кто знал о сотнях неудачных попыток Флори найти свой продуцент пенициллина, относились к моим опытам иронически». Пятнадцатый грибок, выросший на поверхности пиофага, угнетал рост некоторых организмов. Его активность была в 4–6 раз ниже, чем у грибка Флеминга, но случай доказал, что получить пенициллин возможно.

К тому времени, когда пришел ответ от англичан — они советовали обратиться к США, так как опыты по пенициллину прекратились, — антибиотик, по воспоминаниям Балезиной, уже «оказал магическую помощь» советским пациентам. Первые клинические испытания прошли в московском госпитале № 5004 на 25 безнадежных септических раненых. Глава госпиталя профессор Руфанов считал это экспериментом на людях. «Невозможно описать нашу радость и счастье, когда мы поняли, что все наши раненые постепенно выходят из септического состояния и начинают поправляться. В конце концов все 25 были спасены!» — вспоминала Балезина.

Тем не менее возможности производства не соответствовали масштабам научных открытий, тем более развитие медицинской промышленности подкосила война. За исключением того, антибиотик был не в чести у Сталина. В 1943 году своего пенициллина еще не было, СССР получал препарат по ленд-лизу от США, и Сталин боялся, что лекарство окажется зараженным. Для того чтобы применять его в лечении, очень если речь шла о генералитете, требовалось личное разрешение вождя. Так, Никита Хрущев в мемуарах описывает гибель генерала Николая Ватутина: Сталин запретил лечить его пенициллином, и тот умер от гангрены.

И тем не менее промышленное производство пенициллина началось в 1943-м, а спустя год им уже лечили на фронте. По некоторым данным, в конце войны в СССР антибиотика производили в 1000 раз меньше, чем в США, и все же лекарство спасло тысячи солдат, которых считали безнадежными.

Жизнь после

В марте 1945 года препарат появился в американских аптеках. Как только пенициллин стал известен повсеместно, он превратился в панацею: стали появляться мази, капли, лосьоны, притирки и присыпки, которые обещали помочь быстро и от всего. Флеминг реагировал на такое развитие событий в традиционном английском стиле: однажды он сказал, что не удивится, если завтра появится губная помада с пенициллином. В ответ один из его коллег предложил рекламный текст: «Целуйте кого хотите, где хотите, как хотите — и вы избежите неприятных последствий, кроме брака, если будете пользоваться нашей пенициллиновой губной помадой».

В 1945 году Флеминг получил за создание пенициллина Нобелевскую премию по физиологии и медицине. Он публично заявил, что патентовать лекарство не будет, так как оно создано для спасения всего человечества.

В 1947 году советская делегация отправилась в США — за технологией. Члены делегации вернулись год спустя и привезли с собой регламент (правила) эффективного производства. В эти годы оба пенициллина — и отечественный, и зарубежный — стали жертвами политических споров: одни утверждали, что отечественный — лучше, другие пытались доказать, что между импортным пенициллином и нашим различий нет. Несмотря на противоречия, технологию все же купили, и вот тогда пенициллин «для всех» начали производить и в СССР.

За всю историю человечества не было другого лекарства, которое спасло бы столько жизней. «Для победы во Второй мировой войне пенициллин сделал больше, чем 25 дивизий», — именно подобные слова прозвучали при вручении Флемингу Нобелевской премии по биологии и медицине. Внедрение препарата, а за ним целой армии новых антибиотиков продлило среднюю продолжительность жизни человека примерно на 30 лет.

krasgmu.net

75 лет назад был впервые успешно применен пенициллин. Новости. Первый канал

Открытие, которое несколько десятилетий спасает миллионы жизней, но всё больше беспокоит медиков и научное сообщество - в эти дни вспоминают события 75-летней давности, когда прошли удачные клинические испытания первого в мире антибиотика - пенициллина. Тогда казалось, все инфекции побеждены. Чем грозит человечеству устойчивость бактерий к антибиотикам, что ищут на дне океана фармацевты, и как могут помочь лягушки?

Жидкость в ампуле - антибиотик четвертого поколения, который может действовать сразу против 50 штаммов микроорганизмов. Миллионные поставки суперлекарств — реальность сегодняшнего дня. Но секрет антибиотиков не давался человечеству столетиями. Одно из первых научных описаний подобных веществ сделал итальянец Винченцо Тиберио в XIX веке.

В среде учёных ходит легенда. Якобы Тиберио, когда жил в небольшом городке Арцано, заметил одну странность. Как только местный колодец чистили, в семьях по округе вспыхивала дизентерия. И тогда итальянец подумал, а вдруг в колодце до того, как его почистили, было нечто, что мешало развитию опасных бактерий? К его большому удивлению, это оказалась плесень! Но Тиберио не довёл работу до конца. Успех ждал другого.

В 1928 году на заплесневелую чашку Петри в своей лаборатории натыкается ученый Александр Флеминг и не верит глазам: плесень остановила размножение бактерий стафилококка. Бактериолог получает чудо-вещество — естественное оружие плесневого гриба против микробов. К сороковым годам о пенициллине уже говорит весь мир.

"В медицине это было эпохальное, революционное событие, которое абсолютно изменило тактику лечения заболеваний, инфекционных заболеваний", - поясняет профессор кафедры клинической фармакологии РНИМУ им. Н.И. Пирогова Сергей Зырянов.

В феврале 1941 года пенициллин испытали на первом пациенте. К 1942 году препарат - уже на фронтах Второй Мировой. Ивана Котова, тогда молодого хирурга, направляют на работу в госпиталь. Через его руки прошли сотни раненых. Осложнения — самое страшное. Антибиотик впервые в истории позволял спасать таких раненых и избегать ампутаций. Уже в 1945 году Александр Флеминг получает за своё открытие Нобелевскую премию.

И всё же, откуда плесень взялась на рабочем столе у Флеминга? Художница из Москвы Дарья Фёдорова, по сути, раз за разом воспроизводит сценарий того, что случилось в лаборатории бактериолога. В чашках Петри девушка выращивает десятки видов плесени. Красивая и отталкивающая, оказывается, она просто всегда рядом с нами.

"Можно сначала потрогать все дверные ручки, которые есть в доме, потом этой же рукой просто дотронуться до чашки. Можно просто в воздухе движения поделать, и соответственно, засеять то, что находится в воздухе", - объясняет она.

Величайшее открытие в медицине — чистая случайность, Флеминг это признавал. Как выигрыш в лотерею, в чашку со стафилококком попал гриб, который убивал стафилококк. Но в этой истории есть ещё один сюрприз — неприятный. За 75 лет бактерии научились противостоять антибиотикам.

"Не исключена возможность развития ситуации, когда инфекционные болезни опять станут неизлечимыми. Во внутрибольничной среде появились микробы, которые характеризуются сейчас устойчивостью практически ко всем, а иногда даже ко всем антибиотикам", - рассказывает профессор кафедры госпитальной терапии Первого МГМУ имени И.М. Сеченова Сергей Яковлев.

В лабораториях по всему миру ищут способы победить новые супербактерии, устойчивые к лекарствам. А виновных в проблеме уже нашли. Это… мы сами! Антибиотики в домашней аптечке, антибиотики при малейшем чихе... Чем чаще мы принимали эти лекарства, тем лучше бактерии к ним адаптировались. Открывать новые антибиотики всё сложнее, сейчас их ищут на дне океанов, в антарктических грунтах, в растениях и даже на коже лягушек.

Вещества, которые учёные химического факультета МГУ обнаружили в защитной слизи лягушек, могут стать заменой антибиотиков. Принцип действия "антимикробных пептидов" совершенно другой - они не останавливают размножение, а буквально прокалывают мембраны клеток опасных микробов — бьют наповал. К такому нельзя приспособиться.

Это всего лишь один из вариантов лекарств будущего. Но вполне возможный. Для скептиков у учёных простой ответ - если 75 лет назад миллионы жизней спасла плесень, то чем лягушки хуже?

www.1tv.ru

Как Флеминг случайно открыл пенициллин и почему новые антибиотики спасут только на время

Жизнь до открытия антибиотиков вообразить трудно и страшно. Туберкулез и многие другие инфекции были смертным приговором. Судьба выносила их намного чаще, чем в наши дни: больше больных — выше шансы заразиться. Любая хирургическая операция была сравни русской рулетке. В 1920-х годах американский психиатр Генри Коттон, самонадеянно лечивший душевнобольных удалением органов, хвалился, что его методика сравнительно безопасна: умирали всего 33% его пациентов. Как выяснилось позже, Коттон привирал, и смертность достигала 45%. Больницы были рассадниками заразы (впрочем, сейчас мало что изменилось, и причина как раз в антибиотиках). Даже обыкновенная царапина могла свести в могилу, вызвав гангрену или заражение крови. Существовавшие антисептики годились только для наружного применения и часто приносили больше вреда, чем пользы.

Открытое окно и гнилая дыня изменили все

Открытие антибиотиков, точнее, пенициллина приписывают шотландцу Александру Флемингу, но необходимо сделать несколько оговорок. Еще древние египтяне прикладывали к ранам заплесневевший хлеб, размоченный в воде. Почти за четыре года до счастливого случая в лаборатории Флеминга противобактериальные свойства плесени описал его приятель Андре Грация, только он думал, что плесень не убивает микробы напрямую, а лишь стимулирует иммунитет организма, и вводил их вместе с мертвыми бактериями. Какой вид плесени разводил ученый и какое вещество она выделяла, неизвестно: Грация тяжело заболел, а когда вернулся к работе, якобы не смог найти старые записи и образцы.

Плесень в чашке с колонией бактерий. Прозрачные круги вокруг грибка — области, где бактерии погибли

© Don Stalons (phil.cdc.gov)/Wikimedia Commons

Именно плесень убила стафилококки в лаборатории Флеминга. Вышло это случайно: споры грибка надуло ветром из открытого окна. Как и Грация, ученый не смог правильно определить, к какому виду относится целительная плесень. Не смог он и выделить вещество, которое назвал пенициллином, — в экспериментах шотландец использовал отфильтрованный "бульон", где росли грибки. Зато Флеминг подробно описал, как этот фильтрат воздействует на разные бактерии, сравнил плесень с другими видами, а главное — сохранил образцы и рассылал их по первой просьбе коллег.

Один такой образец почти десять лет хранился в Оксфордском университете. В 1939 году немецкий иммигрант Эрнст Чейн выделил из него чистый пенициллин, а его начальник Ховард Флори испытал на животных. В 1945 году их и Флеминга наградили Нобелевской премией по физиологии и медицине. Норман Хитли, который отвечал в команде за разведение плесени и тоже придумывал метод очистки антибиотика, остался без награды, хотя его заслуга не меньше. Достаточно сказать, что у первого пациента, 43-летнего полицейского с раной на лице, пришлось фильтровать мочу, чтобы выделить из нее драгоценный пенициллин. Ему быстро полегчало, но лекарства все равно не хватило, и через месяц он умер.

Когда оксфордские ученые доказали эффективность пенициллина, шла Вторая мировая война. Надежное противобактериальное средство требовалось как никогда: солдаты чаще гибли от инфекций, занесенных в раны, чем от самих ран. Но британские фармацевтические компании были и без того завалены оборонными заказами, поэтому в 1941 году Флори и Хитли отправились в США. Везти плесень в пузырьке было слишком рискованно: кто-нибудь мог его украсть и передать немцам. Выход нашел Хитли: он предложил пропитать грибковыми спорами пальто.

Очистка пенициллина в лаборатории в Англии, 1943 год

© Daily Herald Archive/SSPL/Getty Images

Американцы смогли точно определить, какая плесень завелась у Флеминга и досталась оксфордцам. Но для массового производства использовали не ее, а родственную, выделяющую в шесть раз больше пенициллина. Ее нашли на мускусной дыне, которую принесла с рынка ассистентка. Питанием для грибка послужили кукурузные отходы, богатые сахаром. Выращивать плесень стали в громадных баках с электрической мешалкой, сквозь которые пропускали воздух. Если в конце 1942 года американского пенициллина хватало менее чем на 100 пациентов, то в 1943-м было выпущено уже 21 млрд доз, а в 1945-м — 6,8 трлн доз. Началась новая эра.

Революция в медицине сходит на нет

Пенициллин и другие антибиотики, появившиеся в первые послевоенные десятилетия, перевернули медицину: большинство болезнетворных бактерий были побеждены. Но случилось то, что предвидел еще Флеминг. Антибиотики — древнее природное оружие в бесконечной борьбе видов за выживание. Бактерии так просто не сдаются. Они быстро размножаются: например, возбудитель холеры делится примерно раз в час. Всего за сутки у холерного вибриона появляется столько поколений потомков, сколько у людей родилось со времен Ивана III. Это значит, что эволюция бактерий происходит настолько же быстрее.

Широкое применение антибиотиков — счет идет на миллионы тонн за все время — лишь ускоряет эволюцию: потомство производят стойкие бактерии, а те, на которые действуют лекарства, исчезают. В позапрошлогоднем докладе для правительства Великобритании говорится, что из-за устойчивых к антибиотикам микробов ежегодно умирают 700 тыс. человек. Если ничего не предпринять, к 2050-му каждый год будут умирать уже 10 млн человек, а суммарный экономический ущерб достигнет немыслимых $100 трлн.

Новые антибиотики могли бы частично решить проблему, но они появляются все реже. Фармацевтическим компаниям попросту невыгодно выводить их на рынок. В отличие от каких-нибудь антидепрессантов, принимать их нужно очень редко, а с новыми лекарствами конкурируют чрезвычайно дешевые средства прошлых поколений, которые можно выпускать без лицензии в развивающихся странах. По подсчетам из того же доклада британскому правительству, в среднем антибиотики начинают приносить прибыль только на 23-й год, но вскоре после этого на них истекает патент, и производить их может кто угодно.

По меньшей мере половина антибиотиков применяется в сельском хозяйстве

© AP Photo/Jeff Roberson

Но даже если новые эффективные антибиотики появятся в продаже, нет сомнений, что рано или поздно бактерии приспособятся и к ним. Как быстро это произойдет, зависит от того, как эти лекарства используются. Здесь есть две проблемы. Во-первых, по меньшей мере половина антибиотиков применяется в сельском хозяйстве: на громадных животноводческих фермах, где скот, птицы и рыбы живут чуть ли не на головах друг у друга — и где стремительно распространяется зараза. Во-вторых, во многих странах антибиотики продаются без рецепта, поэтому принимают их бесконтрольно. Но дело в том, что жителям этих стран подчас либо не к кому обратиться, либо не на что. Оставить их еще и без антибиотиков — значит обречь на смерть.

Отказаться от дешевых животных белков и обеспечить медицинской помощью всех нуждающихся намного сложнее, чем найти новую целительную плесень и вывести на рынок препарат на ее основе. Но пока эти две проблемы не будут решены, поиски новых антибиотиков будут лишь отсрочивать время, когда порез на пальце станет смертельным риском.

Марат Кузаев

nauka.tass.ru

Кто придумал пенициллин? - Вопреки здравому смыслу — LiveJournal

Уважаемый mgsupgs в  статье Россия - Родина Слонов! написал о том, как в СССР  норовили едва ли не все великие изобретения человечества, включая паровоз, лампу накаливания, воздушный шар, велосипед и др.,  приписать российским изобретателям. Но справедливости ради надо сказать, что в некоторых случаях подобные утверждения преследовали сугубо практические цели, примером чего может послужить история с пенициллином.

13 сентября 1929 года на заседании медицинского исследовательского клуба при Лондонском университете скромный микробиолог больницы св. Марии Александр Флеминг сообщил о терапевтический свойствах плесени. Этот день принято считать днем рождения пенициллина, однако на доклад Флеминга в ту пору мало кто обратил внимание. И на это были веские причины. Упоминания о лечении гнойных заболеваний плесенью встречались еще в трудах Авиценны (XI век) и Филиппа фон Гогенгейма, известного под именем Парацельс (XVI век), но проблема была в том, как выделить из плесени то вещество, благодаря которому проявляются ее чудодейственные свойства.

Трижды по просьбе Флеминга биохимики приступали к очистке вещества от посторонних примесей, но неудачно: хрупкая молекула разрушалась, утрачивая свои свойства. Решить эту задачу удалось лишь в 1938 году группе ученых Оксфордского университета, получивших на проведение исследований грант в размере $5 тысяч от фонда Рокфеллера. Возглавлял эту группу профессор Говард Флори, но считается, что ее мозговым центром был талантливый биохимик, внук могилевского портного Эрнст Чейн. Впрочем, некоторые эксперты полагают, что успех был достигнут в основном благодаря третьему члену группы, замечательному конструктору Норману Хитли, который с успехом использовал новейшие для того времени технологии лиофилизации (выпаривание посредством низких температур). Убедившись в том, что оксфордской группе удалось очистить пенициллин, Александр Флеминг воскликнул: «Да, вы сумели обработать мое вещество! Вот с такими учеными-химиками я мечтал работать в 1929 году».

Но на этом история пенициллина не закончилась. Наладить массовое производство лекарства в Англии, ежедневно подвергавшейся бомбардировкам, не было никакой возможности. Осенью 1941 года Флори и Хитли отправились в Америку, где предложили технологию производства пенициллина председателю научно-исследовательского медицинского совета США Альфреду Ричардсу. Тот немедленно связался с президентом Рузвельтом, который согласился финансировать программу. Американцы подошли к делу со свойственным им размахом — пенициллиновая программа в миниатюре напоминала «Манхэттенский проект» по созданию атомной бомбы. Все работы были строго засекречены, к делу привлечены ведущие ученые, конструкторы и промышленники. В результате американцам удалось разработать эффективную технологию глубинного брожения. Первый завод стоимостью $200 млн. был построен ударными темпами менее чем за год. Вслед за этим в США и Канаде были построены новые заводы. Производство пенициллина росло как на дрожжах: июнь 1943 года — 0,4 млрд. единиц, сентябрь — 1,8 млрд., декабрь — 9,2 млрд., март 1944 года — 40 млрд. единиц. Уже в марте 1945 года пенициллин появился в американских аптеках.

Лишь когда из США начали поступать сенсационные известия об исцелениях, а вслед за ними появился сам препарат, в Англии спохватились, обнаружив, что используемая технология поверхностного брожения плесени мало того что не дает достаточного количества пенициллина, да вдобавок он получается значительно дороже американского. За технологию и оборудование, которые англичане попросили передать им, американцы заломили огромные деньги. Пришлось ставить зарвавшихся заокеанских друзей на место. С помощью нескольких публикаций в прессе англичане доказали всему миру свой приоритет в изобретении пенициллина. Для убедительности шустрые репортеры даже кое-что присочинили. До сих пор ходит байка о том, что микробиолог Флеминг был таким неряхой, что у него в лабораторной посуде заводилась
плесень.

Также репортеры придумали миф о «заплесневелой Мэри» - женщине, которая якобы приносила сотрудникам оксфордской группы с базара заплесневевшие овощи и фрукты и в один прекрасный день порадовала их дыней, на которой ученые обнаружили размножавшийся со страшной силой грибок Penicillium chrisogenum. Как бы то ни было, но эти запоминающиеся байки, которые были близки и понятны читателям, склонили общественное мнение к тому, что американцы нагло украли у англичан технологию производства пенициллина. Последним аккордом этой истории было присуждение в 1945 году Нобелевской премии по физиологии и медицине Александру Флемингу, Говарду Флори и Эрнсту Чейну. Нормана Хитли, помогавшего американцам освоить технологию производства пенициллина, англичане из списка вычеркнули. Их усилия доказать свое первенство не пропали даром — в конце концов американцы были вынуждены поделиться с ними технологией производства пенициллина.

В СССР тоже попытались было позаимствовать у американцев эту технологию, но неудачно. Заместитель наркома здравоохранения СССР А.Г.Натрадзе рассказывал: «Мы направили за границу делегацию для закупки лицензии на производство пенициллина глубинным способом. Они заломили очень большую цену — $10 млн. Мы посоветовались с министром внешней торговли А.И.Микояном и дали согласие на закупку. Тогда они нам сообщили, что ошиблись в расчетах и что цена будет $20 млн. Мы снова обсудили вопрос с правительством и решили заплатить и эту цену. Потом они сообщили, что не продадут нам лицензию и за $30 млн».

Что оставалось делать в этих условиях? Последовать примеру англичан и доказать свой приоритет в открытии пенициллина. Первым делом подняли архивы и выяснили, что еще в 1871 году на лечебные свойства плесени указали российские врачи Вячеслав Манассеин и Алексей Полотебнов. Кроме того, советские газеты запестрели сообщениями о выдающихся успехах молодого микробиолога Зинаиды Ермольевой, которой удалось произвести отечественный аналог пенициллина под названием крустозин, причем он, как и следовало ожидать, получился намного лучше американского. Из этих сообщений нетрудно было понять, что вражеские шпионы вероломно умыкнули секрет производства крустозина, потому что у себя в капиталистических джунглях американские ученые, которые страдают от нечеловеческой эксплуатации, ни за что бы до этого не додумались. Позже Вениамин Каверин (его брат, ученый-вирусолог Лев Зильбер, был мужем Ермольевой) опубликовал роман «Открытая книга», рассказывающий о том, как главная героиня, прототипом которой была Ермольева, вопреки сопротивлению врагов и бюрократов, подарила народу чудодейственное лекарство.

Это не соответствовало действительности. Пользуясь поддержкой Розалии Землячки (фурия красного террора, как назвал ее Солженицын, некоторое время училась на медицинском факультете Лионского университета, а потому считала себя непревзойденным знатоком медицины), Зинаида Ермольева на основе грибка Penicillium crustosum действительно наладила производство крустозина, однако по качеству отечественный пенициллин значительно уступал американскому. Кроме того, пенициллин Ермольевой производился методом поверхностного брожения в стеклянных «матрацах». И хотя они устанавливались везде, где только можно, объем производства пенициллина в СССР в начале 1944 года был примерно в 1000 раз меньше, чем в США.

Кончилось дело тем, чтотехнология глубинного брожения в обход американцев была, насколько известно,  в частном порядке куплена у Эрнста Чейна, после чего НИИ эпидемиологии и гигиены Красной Армии, директором которого был Н.Копылов, освоил эту технологию и запустил ее в производство. В 1945 году после испытаний отечественного пенициллина большой коллектив во главе с Копыловым был удостоен Сталинской премии. После этого все разговоры о российско-советском приоритете в открытии пенициллина стихли - Вячеслава Манассеина и Алексея Полотебнова в очередной раз предали забвению, Зинаида Ермольева была снята с должности директора Института пенициллина, а ее волшебный крустозин, благодаря которому строители коммунизма могли жить вечно, был выброшен на свалку.

evgknyaginin.livejournal.com

О создателях пенициллина в СССР

В феврале 2014 года на первом канале телевидения прошел документально-игровой фильм «Плесень», рассказывающий об участии плесневого грибка в многовековой истории человечества. Фильм вызвал заслуженную критику как со стороны микробиологов, так и со стороны историков, но вновь — со времен выхода романа Вениамина Каверина «Открытая книга» (1946−1954, окончательная редакция 1980) и двух его экранизаций (1973 и телесериал в 1977—1979 гг.) — привлек широкое внимание к истории отечественного пенициллина. В «Плесени» рассказывается апокрифическая версия о том, как во время войны негуманные союзники не поделились пенициллином с Советским Союзом, но зато потом хитрые чекисты не отдали им ни грамма нашего, более качественного пенициллина — крустазина. Что же говорят об этом документы и человеческие свидетельства? Как это часто бывало, страницы истории советской науки и техники одновременно оказываются страницами истории сталинских репрессий.

История создания пенициллина в СССР отражает эпоху и тянет на основательный детектив, который связан с борьбой за жизни людей и научные приоритеты, когда Советский Союз, казалось бы, безнадёжно отстал от Запада..

Заместитель наркома здравоохранения СССР А. Г. Натрадзе рассказывал: «Мы направили за границу делегацию для закупки лицензии на производство пенициллина глубинным способом. Они заломили очень большую цену — $ 10 млн. Мы посоветовались с министром внешней торговли А. И. Микояном и дали согласие на закупку. Тогда они нам сообщили, что ошиблись в расчетах и что цена будет $ 20 млн. Мы снова обсудили вопрос с правительством и решили заплатить и эту цену. Потом они сообщили, что не продадут нам лицензию и за $ 30 млн.».

Прояснить многие вопросы, появления в СССР антибиотиков и связанного с этим повышения продолжительности жизни советских людей, помог Юрий Вилович ЗЕЙФМАН, сын Вила Иосифовича Зейфмана, сыгравшего немаловажную роль в появлении отечественного пенициллина. Как и его отец, Юрий Вилович — ученый-химик, поэтому, изучая материалы, связанные с жизнью и деятельностью своего отца, он имел возможность разобраться в этом деле вполне профессионально:

Что оставалось делать в этих условиях? Последовать примеру англичан и доказать свой приоритет в производстве пенициллина. Советские газеты запестрели сообщениями о выдающихся успехах микробиолога Зинаиды Ермольевой, которой удалось произвести отечественный аналог пенициллина под названием крустозин, причем он, как и следовало ожидать, намного лучше американского. Из этих сообщений нетрудно было понять, что американские шпионы выкрали секрет производства крустозина, потому что у себя в капиталистических джунглях они ни за что бы до этого не додумались.

Позже Вениамин Каверин (его брат, ученый-вирусолог Лев Зильбер, был мужем Ермольевой) опубликовал роман «Открытая книга», рассказывающий о том, как главная героиня, прототипом которой была Ермольева, вопреки сопротивлению врагов и бюрократов, подарила народу чудодейственный крустозин. Однако это не более чем художественный вымысел. Зинаида Ермольева на основе грибка Penicillium crustosum действительно наладила производство крустозина, однако по качеству отечественный пенициллин уступал американскому.

Кроме того, пенициллин Ермольевой производился методом поверхностного брожения в стеклянных «матрацах». И хотя они устанавливались везде, где только можно, объем производства пенициллина в СССР в начале 1944 года был примерно в 1000 раз меньше, чем в США, имевшийся у нас препарат получался кустарным способом в количествах, совершенно несоответствующих потребностям отечественного здравоохранения, и к тому же он был малоактивен. Кстати проблема организации, быстрого и качественного серийного производства, какого-либо изобретения и создания на его основе конкурентно способного продукта, до сих слабо решена в нашей стране. Поэтому в 1945 г. во Всесоюзном химико-фармацевтическом институте (ВНИХФИ) для ускорения работ была создана лаборатория технологии пенициллина. А в июне 1946 г. мой отец, отозванный из армии, эту лабораторию возглавил.

Создатель советского пенициллина, Вил Иосифович Зейфман родился в 1911 г. в гор. Кельцы, в польской части Российской империи. Его отец был портным, а мать — белошвейкой. В 1914 г. семья переехала в Коканд (Туркменистан), а в 1921 г. — в Ташкент, где мой отец закончил школу и начал учиться в институте, завершив обучение в 1932 году уже в Москве, в Химико-технологическом институте. Затем он год служил в армии и два года работал в Институте чистых химических реактивов, а в 1936 г. переехал в подмосковный поселок Обухово для работы на заводе «Акрихин» (с 1938-го — в должности начальника технического отдела завода. В начале 1940 г. отец был призван в кадры РККА, а с лета 1943 г. в составе отдельного батальона химической защиты участвовал в боях 3-го Украинского фронта. Украина — Румыния — Венгрия — Чехословакия, боевые ордена и медали, легкое ранение и тяжелая контузия. Так вот, во ВНИХФИ, в подразделении, руководимом отцом, при консультациях профессоров Н. И. Гельперина и Л. М. Уткина, на основании данных советской разведки, добытых агентами Твеном и «Черным» (он же «Питер», «Блэк») в течение 1946 года была создана полузаводская установка, в основу которой были положены как свойства самого пенициллина, так и его продуцента.

Воздух, в котором рос грибок, было необходимо активно аэрировать кислородом — это выполнял созданный аппарат глубинной ферментации; также требовалась стерилизация воздуха и всего оборудования, поскольку продуцент был чрезвычайно чувствителен к примесям микроорганизмов. Кроме того, в начале работ извлечение продукта из культуральной жидкости достигалось с помощью так называемой лиофильной сушки — замораживания жидкой фазы до t`= -50−60оC и удаления воды в виде льда с помощью высокого вакуума. Эта технология в увеличенном масштабе легла в основу первых пенициллиновых заводов, построенных в Москве и Риге. При этом получался желтый аморфный продукт низкой активности, который к тому же был пироформным, то есть вызывал повышение температуры у пациентов. В то же время образцы пенициллина, поступавшего из-за границы, представляли собой кристаллический порошок, устойчивый при хранении и не дающий побочных эффектов. Я хорошо помню часто повторявшиеся домашние разговоры: наш — желтый аморфный, у них — белый кристаллический. Специалистам было ясно, что для достижения такого же результата потребуется много времени, средств и сил, а интересы отечественного здравоохранения требовали скорейшего решения всех этих проблем. Постепенно стало понятно, что в нашей стране этот антибиотик производили с 1944 г., используя метод поверхностного вырашивания гриба. Однако, уже к этому времени США, вложив офомные средства (более 20 млн долларов), разработали и запустили мошные комбинаты по производству пенициллина глубинным способом вырашивания гриба и в том же 1944 г. получили 90% всей мировой продукции антибиотика. Получить же технологию глубинного способа производства пенициллина, с помощью советской разведки уже не получалось, т.к. к тому времени резидентура СССР, уже была под плотным колпаком у ФБР США.

Попытки советского руководства, официально купить лицензию на производство пенициллина глубинным способом у наших союзников по Второй мировой войне не увенчались успехом они отказали нам в приобретении лицензии. Тогдашние руководители медицинской промышленности Натрадзе и Третьяков обосновали перед правительством необходимость послать в США и Англию комиссию специалистов, которая смогла бы помочь советским зарубежным торговым организациям сделать правильный выбор в покупке технологии и новейшего оборудования для производства пенициллина. По указанию А. И. Микояна, который и сам в середине 30-х годов, привез из США множество технологий для пищевой промышленности была создана комиссия в составе директора вновь созданного ВНИИ пенициллина профессора Бородина, сотрудника ВНИХФИ профессора Л. М. Уткина и моего отца, возглавившего во ВНИИП отдел экспериментальной технологии. В августе 1947 г. комиссия выехала в США.

Начавшаяся в то время «холодная война» и политика прямой дискриминации в торговле с СССР чрезвычайно усложнили выполнение задачи, поставленной перед этой комиссией и торгпредствами. Правительство США, несмотря на предварительную договоренность нашего Минторга с рядом американских фирм, запретило им продавать Советам что-либо, связанное с производством пенициллина. Через три месяца комиссии пришлось выехать в Англию. Но и там выяснилось, что английские фирмы, полностью зависимые от американских, отказались от продаж, связанных с пенициллином. Тогда выявилась единственная возможность выполнить поставленную задачу — использовать предложение профессора Чейна, автора и владельца патента на получение пенициллина нужного качества, продать нам свой патент и предоставить имевшиеся у него данные по промышленному производству пенициллина. Цена этой сделки была во много раз меньше, чем ранее требовали англо-американские фирмы. Предложение Чейна было принято, и в течение девяти месяцев отец работал у него в оксфордской лаборатории, где выполнил исследование «Рациональные биологические методы производства пенициллина» и ознакомился с другими работами, проводимыми Чейном. Кроме того, Чейн передал отцу штамм культуры, продуцирующей стрептомицин, который отец нелегально — в кармане пиджака — вывез из Англии и передал во ВНИИП.

Именно этот штамм послужил затем первоосновой производства в Союзе еще одного антибиотика — активного средства борьбы с туберкулезом. В сентябре 1948 г. комиссия, завершив работу, вернулась на родину. Однако в день отплытия из Англии произошло чрезвычайное событие — ее руководитель профе

skeptimist.livejournal.com


Смотрите также

     
     
Лекарственные растения для лечения заболеваний на букву А Лекарственные растения для лечения заболеваний на букву Б Лекарственные растения для лечения заболеваний на букву В
Лекарственные растения для лечения заболеваний на букву Г Лекарственные растения для лечения заболеваний на букву Д Лекарственные растения для лечения заболеваний на букву Е
Лекарственные растения для лечения заболеваний на букву Ж Лекарственные растения для лечения заболеваний на букву З Лекарственные растения для лечения заболеваний на букву И
Лекарственные растения для лечения заболеваний на букву К Лекарственные растения для лечения заболеваний на букву Л Лекарственные растения для лечения заболеваний на букву М
Лекарственные растения для лечения заболеваний на букву Н Лекарственные растения для лечения заболеваний на букву О Лекарственные растения для лечения заболеваний на букву П
Лекарственные растения для лечения заболеваний на букву Р Лекарственные растения для лечения заболеваний на букву С Лекарственные растения для лечения заболеваний на букву Т
Лекарственные растения для лечения заболеваний на букву У Лекарственные растения для лечения заболеваний на букву Ф
Лекарственные растения для лечения заболеваний на букву Ц Лекарственные растения для лечения заболеваний на букву Ч Лекарственные растения для лечения заболеваний на букву Ш
Лекарственные растения для лечения заболеваний на букву Э Лекарственные растения для лечения заболеваний на букву Ю Лекарственные растения для лечения заболеваний на букву Я
 
Карта сайта, XML.