ГлавнаяСбор Сушка   Поиск
     
     
Лекарственные растения на букву А Лекарственные растения на букву Б Лекарственные растения на букву В
Лекарственные растения на букву Г Лекарственные растения на букву Д Лекарственные растения на букву Е
Лекарственные растения на букву Ж Лекарственные растения на букву З Лекарственные растения на букву И
Лекарственные растения на букву К Лекарственные растения на букву Л Лекарственные растения на букву М
Лекарственные растения на букву Н Лекарственные растения на букву О Лекарственные растения на букву П
Лекарственные растения на букву Р Лекарственные растения на букву С Лекарственные растения на букву Т
Лекарственные растения на букву У Лекарственные растения на букву Ф Лекарственные растения на букву Х
Лекарственные растения на букву Ц Лекарственные растения на букву Ч Лекарственные растения на букву Ш
Лекарственные растения на букву Щ Лекарственные растения на букву Э Лекарственные растения на букву Ю,Я
 

Пример регуляторной функции липидов


Функции липидов и их характеристика

Липиды выступают важнейшим источником энергетического запаса организма. Факт очевиден даже на номенклатурном уровне: греческое «липос» переводится как жир. Соответственно, категория липидов объединяет жироподобные вещества биологического происхождения. Функционал соединений достаточно разнообразен, что обусловлено неоднородностью состава данной категории био-объектов.

Какие функции выполняют липиды

Перечислите основные функции липидов в организме, которые являются основными. На ознакомительном этапе целесообразно выделить ключевые роли жироподобных веществ в клетках организма человека. Базовый перечень – это пять функций липидов:

  1. резервно-энергетическая;
  2. структурообразующая;
  3. транспортная;
  4. изолирующая;
  5. сигнальная.

К второстепенным задачам, которые липиды выполняют в сочетании с другими соединениями можно отнести регуляторную и ферментативную роль.

Энергетический запас организма

Это не только одна из важных, но приоритетная роль жироподобных соединений. По сути, часть липидов является.источником энергии всей клеточной массы. Действительно, жир для клеток – аналог топлива в баке автомобиля. Реализуется энергетическая функция липидами следующим образом. Жиры и подобные им вещества окисляются в митохондриях, расщепляясь до уровня воды и двуокиси углерода. Процесс сопровождается выделением значительного количества АТФ – высокоэнергетических метаболитов. Их запас позволяет клетке участвовать в энергозависимых реакциях.

Структурные блоки

Одновременно, липиды осуществляют строительную функцию: с их помощью формируется мембрана клетки. В процессе участвуют следующие группы жироподобных веществ:

  1. холестерин – липофильный спирт;
  2. гликолипиды – соединения липидов с углеводами;
  3. фосфолипиды – эфиры сложных спиртов и высших карбоновых кислот.

Следует отметить, что в сформировавшейся мембране, непосредственно жиры не содержатся. Образовавшаяся стенка между клеткой и внешней средой оказывается двухслойной. Это достигается вследствие бифильности. Подобная характеристика липидов указывает, что одна часть молекулы – гидрофобна, то есть нерастворима в воде, вторая, напротив – гидрофильна. Как результат, бислой клеточной стенки формируется вследствие упорядоченного расположения простых липидов. Молекулы разворачиваются гидрофобными участками друг к другу, тогда как гидрофильные хвосты направлены внутрь и вне клетки.

Это определяет защитные функции мембранных липидов. Во-первых, мембрана придает клетке форму и даже сохраняет ее. Во-вторых, двойная стенка – своеобразный пункт паспортного контроля, не пропускающий через себя нежелательных визитеров.

Автономная система отопления

Конечно, это наименование достаточно условно, но вполне применимо, если рассматривать какие функции выполняют липиды. Соединения не столько отапливают организм сколько удерживают тепло внутри. Подобная роль отведена жировым отложениям, формирующимся вокруг различных органов и в подкожной ткани. Этот класс липидов характеризуется высокими теплоизолирующими свойствами, что предохраняет жизненно-важные органы от переохлаждения.

«Золотой» запас индивидуума

Дополнительно, жировые отложения выполняют резервную функцию. Это фактически кладезь энергии, используемый организмом при необходимости, Как пример, голодание или интенсивные физические нагрузки. Весь механизм осуществляется при содействии адипоциты. Это специальные клетки, строение и функции которых тесно связаны с триглицеридами. Жир занимает подавляющий объем адипоцитов.

Такси заказывали?

Транспортную роль липидов относят к второстепенной функции. Действительно, перенос веществ (преимущественно триглицеридов и холестерина) осуществляется отдельными структурами. Это связанные комплексы липидов и белков, именуемые липопротеины. Как известно, жироподобные вещества нерастворимы в воде, соответственно плазме крови. Напротив, функции белков включают гидрофильность. Как результат, ядро липопротеида – скопление триглицеридов и эфиров холестерина, тогда как оболочка – смесь молекул протеина и свободного холестерола. В таком виде, липиды доставляются к тканям или обратно в печень для вывода из организма.

Второстепенные факторы

Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

  • ферментативная;
  • сигнальная;
  • регуляторная

Сигнальная функция

Некоторые сложные липиды, в частности их строение, позволяют передавать нервные импульсы между клетками. Посредником в подобном процесс выступают гликолипиды. Не менее важным оказывается способность распознавать внутриклеточные импульсы, также реализуемая жироподобными структурами. Это позволяет отбирать из крови необходимые клетке вещества.

Ферментативная функция

Липиды, независимо от расположения в мембране или вне ее – не входят в состав ферментов. Однако, их биоснтез происходит с присутствием жироподобных соединений. Дополнительно, липиды участвуют в выполнении защиты стенок кишечника от ферментов поджелудочной железы. Избыток последних нейтрализуется желчью, где в значительных количествах включены холестерин и фосфолипиды.

Регуляторная функция

Еще одна роль, которую для называют второстепенной. Не участвуя непосредственно в регулирующих процессах, липиды входят в состав соединений, осуществляющих подобные функции. В частности, это мембрана клетки, выполняющая пропускной режим. Другим примером выступают стероидные гормоны, регулирующие обмен веществ, репродуктивную способность, и иммунную защиту организма.

Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

sosudportal.ru

Липиды — Википедия

Липи́ды (от др.-греч. λίπος — жир) — обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов. Содержатся во всех живых клетках[1]. Будучи одним из основных компонентов биологических мембран, липиды влияют на проницаемость клеток и активность многих ферментов, участвуют в передаче нервного импульса, в мышечном сокращении, создании межклеточных контактов, в иммунохимических процессах[2]. Также липиды образуют энергетический резерв организма, участвуют в создании водоотталкивающих и термоизоляционных покровов, защищают различные органы от механических воздействий и др[1]. К липидам относят некоторые жирорастворимые вещества, в молекулы которых не входят жирные кислоты, например, терпены, стерины. Многие липиды — продукты питания, используются в промышленности и медицине[1].

Согласно нестрогому определению, липид — гидрофобное органическое вещество, растворимое в органических растворителях; согласно строгому химическому определению, это гидрофобная или амфифильная молекула, полученная путём конденсации тиоэфиров или изопренов[3].

Используемое ранее определение липидов, как группы органических соединений, хорошо растворимых в неполярных органических растворителях (бензол, хлороформ) и практически нерастворимых в воде, является слишком расплывчатым. Во-первых, такое определение вместо чёткой характеристики класса химических соединений говорит лишь о физических свойствах. Во-вторых, в настоящее время известно достаточное количество соединений, нерастворимых в неполярных растворителях или же, наоборот, хорошо растворимых в воде, которые, тем не менее, относят к липидам. В современной органической химии определение термина «липиды» основано на биосинтетическом родстве данных соединений — к липидам относят жирные кислоты и их производные[4]. В то же время в биохимии и других разделах биологии к липидам по-прежнему принято относить и гидрофобные или амфифильные вещества другой химической природы[5]. Это определение позволяет включать сюда холестерин, который вряд ли можно считать производным жирной кислоты.

Липиды — один из важнейших классов сложных молекул, присутствующих в клетках и тканях животных. Липиды выполняют самые разнообразные функции: снабжают энергией клеточные процессы, формируют клеточные мембраны, участвуют в межклеточной и внутриклеточной сигнализации. Липиды служат предшественниками стероидных гормонов, жёлчных кислот, простагландинов и фосфоинозитидов. В крови содержатся отдельные компоненты липидов (насыщенные жирные кислоты, мононенасыщенные жирные кислоты и полиненасыщенные жирные кислоты), триглицериды, холестерин, эфиры холестерина и фосфолипиды. Все эти вещества не растворимы в воде, поэтому в организме имеется сложная система транспорта липидов. Свободные (неэтерифицированные) жирные кислоты переносятся кровью в виде комплексов с альбумином. Триглицериды, холестерин и фосфолипиды транспортируются в форме водорастворимых липопротеидов. Некоторые липиды используются для создания наночастиц, например, липосом. Мембрана липосом состоит из природных фосфолипидов, что определяет их многие привлекательные качества. Они нетоксичны, биодеградируемы, при определённых условиях могут поглощаться клетками, что приводит к внутриклеточной доставке их содержимого. Липосомы предназначены для целевой доставки в клетки препаратов фотодинамической или генной терапии, а также компонентов другого назначения, например, косметического[3].

Классификация липидов, как и других соединений биологической природы, — весьма спорный и проблематичный процесс. Предлагаемая ниже классификация хоть и широко распространена в липидологии, но является далеко не единственной. Она основывается, прежде всего, на структурных и биосинтетических особенностях разных групп липидов.

Простые липиды[править | править код]

Простые липиды — липиды, включающие в свою структуру углерод (С), водород (H) и кислород (O).

Примеры жирных кислот: миристиновая (насыщенная жирная кислота) и миристолеиновая (мононенасыщенная кислота) имеют 14 атомов углерода

Сложные липиды[править | править код]

Сложные липиды — липиды, включающие в свою структуру помимо углерода (С), водорода (H) и кислорода (О) другие химические элементы. Чаще всего: фосфор (Р), серу (S), азот (N).

Общее строение фосфолипидов
Заместители R1 и R² — остатки жирных кислот, X зависит от типа фосфолипида.
  • Полярные
    • Фосфолипиды — сложные эфиры многоатомных спиртов и высших жирных кислот, содержащие остаток фосфорной кислоты и соединённую с ней добавочную группу атомов различной химической природы.
    • Гликолипиды — сложные липиды, образующиеся в результате соединения липидов с углеводами.
    • Фосфогликолипиды
    • Сфинголипиды — класс липидов, относящихся к производным алифатических аминоспиртов.
    • Мышьяколипиды

Оксилипиды[править | править код]

Молекулы простых липидов состоят из спирта, жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот, возможны остатки фосфорной кислоты, углеводов, азотистых оснований и др. Строение липидов зависит в первую очередь от пути их биосинтеза.

Энергетическая (резервная) функция[править | править код]

Многие жиры используются организмом как источник энергии. При полном окислении 1 г жира выделяется около 9 ккал энергии, примерно вдвое больше, чем при окислении 1 г углеводов (4,1 ккал). Жировые отложения используются в качестве запасных источников питательных веществ, прежде всего животными, которые вынуждены носить свои запасы на себе. Растения чаще запасают углеводы, однако в семенах многих растений высоко содержание жиров (растительные масла добывают из семян подсолнечника, кукурузы, рапса, льна и других масличных растений).

Почти все живые организмы запасают энергию в форме жиров. Существуют две основные причины, по которым именно эти вещества лучше всего подходят для выполнения такой функции. Во-первых, жиры содержат остатки жирных кислот, уровень окисления которых очень низкий (почти такой же как у углеводородов нефти). Поэтому полное окисление жиров до воды и углекислого газа позволяет получить более чем в два раза больше энергии, чем окисление той же массы углеводов. Во-вторых, жиры — гидрофобные соединения, поэтому организм, запасая энергию в такой форме, не должен нести дополнительной массы воды необходимой для гидратации, как в случае с полисахаридами, на 1 г которых приходится 2 г воды. Однако триглицериды — это «более медленный» источник энергии, чем углеводы.

Жиры запасаются в форме капель в цитоплазме клетки. У позвоночных имеются специализированные клетки — адипоциты, почти полностью заполненные большой каплей жира. Также богатыми на триглицериды являются семена многих растений. Мобилизация жиров в адипоцитах и клетках прорастающих семян происходит благодаря ферментам липазам, которые расщепляют их до глицерина и жирных кислот.

У людей наибольшее количество жировой ткани находится под кожей (так называемая подкожная клетчатка), особенно в районе живота и молочных желез. Человеку с лёгким ожирением (15-20 кг триглицеридов) таких запасов может хватить для обеспечения себя энергией в течение месяца, в то время как всего запасного гликогена хватит более чем на сутки[6].

Функция теплоизоляции[править | править код]

Жир — хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла. Особенно толстый подкожный жировой слой характерен для водных млекопитающих (китов, моржей и др.). Но в то же время у животных, обитающих в условиях жаркого климата (верблюды, тушканчики) жировые запасы откладываются на изолированных участках тела (в горбах у верблюда, в хвосте у жирнохвостых тушканчиков) в качестве резервных запасов воды, так как вода — один из продуктов окисления жиров.

Структурная функция[править | править код]

Фосфолипиды составляют основу билипидного слоя клеточных мембран, холестерин — регулятор текучести мембран. У архей в состав мембран входят производные изопреноидных углеводородов. Воск образует кутикулу на поверхности надземных органов (листьев и молодых побегов) растений. Их также производят многие насекомые (так, пчёлы строят из них соты, а червецы и щитовки образуют защитные чехлы).

Все живые клетки окружены плазматическими мембранами, основным структурным элементом которых является двойной слой липидов (липидный бислой). В 1 мкм² биологической мембраны содержится около миллиона молекул липидов[7]. Все липиды, входящие в состав мембран, имеют амфифильные свойства: они состоят из гидрофильной и гидрофобной частей. В водной среде такие молекулы спонтанно образуют мицеллы и бислои в результате гидрофобных взаимодействий, в таких структурах полярные головы молекул обращены наружу к водной фазе, а неполярные хвосты — внутрь, такое же размещение липидов характерно для естественных мембран. Наличие гидрофобного слоя очень важно для выполнения мембранами их функций, поскольку он непроницаем для ионов и полярных соединений[6].

Основными структурными липидами, которые входят в состав мембран животных клеток, являются глицерофосфолипиды, в основном фосфатидилхолин и фосфатидилэтаноламин, а также холестерол, что увеличивает их непроницаемость. Отдельные ткани могут быть выборочно обогащены другими классами мембранных липидов, например нервная ткань содержит большое количество сфингофосфолипидов, в частности сфингомиелина, а также сфингогликолипидов. В мембранах растительных клеток холестерол отсутствует, однако встречается другой стероид — эргостерол. Мембраны тилакоидов содержат большое количество галактолипидов, а также сульфолипиды.

Регуляторная[править | править код]

Некоторые липиды играют активную роль в регулировании жизнедеятельности отдельных клеток и организма в целом. В частности, к липидам относятся стероидные гормоны, секретируемые половыми железами и корой надпочечников. Эти вещества переносятся кровью по всему организму и влияют на его функционирование.

Среди липидов есть также и вторичные посредники — вещества, участвующие в передаче сигнала от гормонов или других биологически активных веществ внутри клетки. В частности фосфатидилинозитол-4,5-бифосфат (ФИ (4,5) Ф2) задействован в сигнализировании при участии G-белков, фосфатидилинозитол-3,4,5-трифосфат инициирует образование супрамолекулярных комплексов сигнальных белков в ответ на действие определённых внеклеточных факторов, сфинголипиды, такие как сфингомиелин и церамид, могут регулировать активность протеинкиназы.

Производные арахидоновой кислоты — эйкозаноиды — являются примером паракринных регуляторов липидной природы. В зависимости от особенностей строения эти вещества делятся на три основные группы: простагландины, тромбоксаны и лейкориены. Они участвуют в регуляции широкого спектра физиологических функций, в частности эйкозаноиды необходимы для работы половой системы, для индукции и прохождения воспалительного процесса (в том числе обеспечение таких его аспектов как боль и повышенная температура), для свёртывания крови, регуляции кровяного давления, также они могут быть задействованы в аллергических реакциях[6].

Защитная (амортизационная)[править | править код]

Толстый слой жира защищает внутренние органы многих животных от повреждений при ударах (например, сивучи при массе до тонны могут прыгать в воду со скал высотой 20-25 м[источник не указан 2708 дней]).

Увеличения плавучести[править | править код]

Самые разные организмы — от диатомовых водорослей до акул — используют резервные запасы жира как средство снижения среднего удельного веса тела и, таким образом, увеличения плавучести. Это позволяет снизить расходы энергии на удержание в толще воды.

Среди липидов в диете человека преобладают триглицериды (нейтральные жиры), они являются богатым источником энергии, а также необходимы для всасывания жирорастворимых витаминов. Насыщенными жирными кислотами богата пища животного происхождения: мясо, молочные продукты, а также некоторые тропические растения, такие как кокосы. Ненасыщенные жирные кислоты попадают в организм человека в результате употребления орехов, семечек, оливкового и других растительных масел. Основными источниками холестерола в рационе является мясо и органы животных, яичные желтки, молочные продукты и рыба. Однако около 85 % процентов холестерола в крови синтезируется печенью[8]. Организация American Heart Association рекомендует употреблять липиды в количестве не более 30 % от общего рациона, сократить содержание насыщенных жирных кислот в диете до 10 % от всех жиров и не принимать более 300 мг (количество, содержащееся в одном желтке) холестерола в сутки. Целью этих рекомендаций является ограничение уровня холестерола и триглицеридов в крови до 20 мг / л.[8]

Суточная потребность взрослого человека в липидах — 70—145 граммов.

Печень играет ключевую роль в метаболизме жирных кислот, однако некоторые из них она синтезировать неспособна. Поэтому они называются незаменимыми, к таким в частности относятся ω-3- (линоленовая) и ω-6- (линолевая) полиненасыщенные жирные кислоты, они содержатся в основном в растительных жирах. Линоленовая кислота является предшественником для синтеза двух других ω-3-кислот: эйозапентаэноевой (EPA) и докозагексаэноевой (DHA)[6]. Эти вещества необходимы для работы головного мозга, и положительно влияют на когнитивные и поведенческие функции[9].

Важно также соотношение ω-6\ω-3-жирных кислот в рационе: рекомендуемые пропорции лежат в пределах от 1:1 до 4:1. Однако исследования показывают, что большинство жителей Северной Америки употребляют в 10-30 раз больше ω-6 жирных кислот, чем ω-3. Такое питание связано с риском возникновения сердечно-сосудистых заболеваний. Зато «средиземноморская диета» считается значительно здоровее, она богата на линоленовую и другие ω-3-кислоты, источником которых являются зелёные растения (например листья салата), рыба, чеснок, целые злаки, свежие овощи и фрукты. Как пищевую добавку, содержащую жирные кислоты ω-3, рекомендуется принимать рыбий жир[6][9].

Большинство природных жиров содержат ненасыщенные жирные кислоты с двойными связями в цис-конфигурации. Если пища, богатая такими жирами, долгое время находится в контакте с воздухом, она горчит. Этот процесс связан с окислительным расщеплением двойных связей, в результате которого образуются альдегиды и карбоновые кислоты с меньшей молекулярной массой, часть из которых является летучими веществами.

Для того чтобы увеличить срок хранения и устойчивость к высоким температурам триглицеридов с ненасыщенными жирными кислотами применяют процедуру частичной гидрогенизации. Следствием этого процесса является превращение двойных связей в одинарные, однако побочным эффектом также может быть переход двойных связей из цис- в транс-конфигурацию. Употребление так называемых «транс-жиров» влечёт повышение содержания липопротеинов низкой плотности («плохой» холестерол) и снижение содержания липопротеинов высокой плотности («хороший» холестерол) в крови, что приводит к увеличению риска возникновения сердечно-сосудистых заболеваний, в частности коронарной недостаточности. Более того «транс-жиры» способствуют воспалительным процессам.

  1. 1 2 3 Липиды // Большой энциклопедический словарь.
  2. ↑ Липиды / Л. Д. Бергельсон // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  3. 1 2 Народицкий Борис Савельевич, Ширинский Владимир Павлович, Нестеренко Людмила Николаевна. Липид (неопр.). Роснано. Дата обращения 8 марта 2012. Архивировано 23 июня 2012 года.
  4. ↑ 2ai2  (недоступная ссылка с 21-05-2013 [2477 дней] — историякопия)
  5. ↑ biochem/index.htm (недоступная ссылка)  (недоступная ссылка с 21-05-2013 [2477 дней] — историякопия)
  6. 1 2 3 4 5 Nelson D.L., Cox M.M. Lehninger Principles of Biochemistry (неопр.). — 5th. — W. H. Freeman (англ.)русск., 2008. — ISBN 978-0-7167-7108-1.
  7. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell (неопр.). — 5th. — Garland Science (англ.)русск., 2007. — ISBN 978-0-8153-4105-5.
  8. 1 2 Marieb E. N., Hoehn K. Human Anatomy & Physiology (неопр.). — 7th. — Benjamin Cummings (англ.)русск., 2006. — ISBN 978-0805359091.
  9. 1 2 Omega-3 fatty acids
  • Липиды // Большая российская энциклопедия. Том 17. — М., 2010. — С. 550—551.
  • Черкасова Л. С., Мережинский М. Ф., Обмен жиров и липидов, Минск, 1961;
  • Маркман А. Л., Химия липидов, в. 1—2, Таш., 1963—70;
  • Тютюнников Б. Н., Химия жиров, М., 1966;
  • Малер Г., Кордес К., Основы биологической химии, пер. с англ., М., 1970.
  • Julian N. Kanfer and Sen-itiroh Hakomori, Sphingolipid Biochemistry, vol. 3 of Handbook of Lipid Research (1983)
  • Dennis E. Vance and Jean E. Vance (eds.), Biochemistry of Lipids and Membranes (1985).
  • Donald M. Small, The Physical Chemistry of Lipids, vol. 4 of Handbook of Lipid Research (1986).
  • Robert B. Gennis, Biomembranes: Molecular Structure and Function (1989)
  • Gunstone, F. D., John L. Harwood, and Fred B. Padley (eds.), The Lipid Handbook (1994).
  • Charles R. Scriver, Arthur L. Beaudet, William S. Sly, and David Valle, The Metabolic and Molecular Bases of Inherited Disease (1995).
  • Gunstone, F. D. Fatty acids and lipid chemistry. — London: Blackie Academic and Professional, 1996. 252 pp.
  • Robert M. Bell, John H. Exton, and Stephen M. Prescott (eds.), Lipid Second Messengers, vol. 8 of Handbook of Lipid Research (1996).
  • Christopher K. Mathews, K.E. van Holde, and Kevin G. Ahern, Biochemistry, 3rd ed. (2000).
  • Chapter 12 in «Biochemistry» by Jeremy M. Berg, John L. Tymoczko and Lubert Stryer (2002) W. H. Freeman and Co.
  • Alberts, B., et al. (2004) «Essential Cell Biology, 2nd Edition.» Garland Science. ISBN 0-8153-3480-X
  • Solomon, Eldra P., et. al. (2005) «Biology, 7th Edition.» Thomson, Brooks/Cole.
  • «Advanced Biology — Principles and Applications.» C.J. Clegg and D.G. Mackean. ISBN 0-7195-7670-9
  • Georg Löffler, Petro E. Petrides: Biochemie und Pathobiochemie. Springer, Berlin 2003, ISBN 3-540-42295-1
  • Florian Horn, Isabelle Moc, Nadine Schneider: Biochemie des Menschen. Thieme, Stuttgart 2005, ISBN 3-13-130883-4
  • Charles E. Mortimer, Ulrich Müller: Chemie. Thieme, Stuttgart 2003, ISBN 3-13-484308-0
  • Fahy E. et al. A comprehensive classification system for lipids // J. Lipid. Res. 2005. V. 46, № 5. P. 839—861.

ru.wikipedia.org

Функции липидов:

Липиды принимают участие в выполнении следующий функций:

1. Структурная или пластическая роль липидов состоит в том, что они входят в состав структурных компонентов клетки (фосфо- и гликолипиды), ядра, цитоплазмы, мембраны и в значительной степени определяют их свойства (в нервной ткани содержится до 25% , в клеточных мембранах до 40% жиров).

2. Энергетическая функция – обеспечивает 25—30% всей энергии необходимой организму (при расщеплении 1г жира образуется 38,9 кДж.). У взрослой женщины доля жировой ткани в организме составляет в среднем 20—25% массы тела, что почти вдовое больше, чем у мужчины (соответственно 12— 14%). Следует полагать, что жир выполняет в женском организме еще и специфические функции. В частности, жировая ткань обеспечивает женщине резерв энергии, необходимый для вынашивания плода и грудного вскармливания.

3. Жиры являются источником образования эндогенной воды. При окислении 100 г жира выделяется 107 мл Н2О.

4. Функция запасания питательных веществ (жировое депо). Жиры являются своего рода «энергетическими консервами».

5.Защитная. Жиры защищают органы от повреждений (подушка около глаз, околопочечная капсула).

6. Выполняют транспортную функцию – носители жирорастворимых витаминов.

7. Терморегуляционная. Жиры предохраняют организм от потери тепла.

8. Жиры являются источником синтеза стероидных гормонов.

9. Участвуют в синтезе тромбопластина и миелина нервной ткани, желчных кислот, простагландинов и витамина D.

10. Существуют данные о том, что часть мужских половых стероидных гормонов в жировой ткани преобразуется в женские гормоны, что является основой косвенного участия жировой ткани в гуморальной регуляции функций организма.

Метаболизм жиров в организме.

Нейтральные жиры являются важнейшим источником энергии. За счет окисления образуется 50% всей энергии необходимой организму. Нейтральные жиры, составляющие основную массу животной пищи и липидов организма (10—20% массы тела), являются источником эндо­генной воды. Физиологическое депонирование нейтральных жиров выполняют липоциты, накапливая их в подкожной жировой клетчатке, сальнике, жировых капсулах различных органов – увеличиваясь в объеме. Считают, что количество жировых клеток закладывается в детском возрасте и в дальнейшем может лишь увеличиваться в размерах. Жиры, депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы – от механических повреждений. Жир может депонироваться в печени и мышцах. Количество жира отложенного в депо зависит от характера питания, особенностей конституции, пола, возраста, вида деятельности, образа жизни и т.д.

Фосфо- и гликолипиды входят в состав всех клеток (клеточные липиды), особенно нервных. Этот вид жиров – непременный компонент биологических мембран. Фосфолипиды синтезируются в печени и в кишечной стенке, однако только гепатоциты способны выделять их в кровь. Поэтому печень является единственным органом, определяющим уровень фосфолипидов крови.

Бурый жир представлен особой жировой тканью, располагающейся у новорожденных и грудных детей в области шеи и верхней части спины (его количество в организме 1—2% от общей массы тела). В небольшом количестве (0,1—0,2% от общей массы тела) бурый жир имеется и у взрослого человека. Особенностью состава бурого жира является огромное количество митохондрий с красновато-бурыми пигментами в которых происходят интенсивные процессы окисления, не сопряженные с образованием АТФ. Важнейшую роль в механизмах этого явления играет белок термогенин, составляющий 10—15% общего белка митохондрий бурого жира. Продукция тепла бурым жиром (на единицу массы его ткани) в 20 и более раз превышает таковую обычной жировой ткани.

У новорожденных низкая функциональная активность организма и незрелость центральных и периферических механизмов терморегуляции не обеспечивают достаточную теплопродукцию, поэтому функцию дополнительного специфического генератора тепла выполняет бурый жир. У взрослых же необходимость в дополнительном источнике тепла отпадает, так как теплопродукция обеспечивается иными, более совершенными, механизмами.

Следует отметить, что бурый жир является также источником эндогенной воды.

Высшие жирные кислоты являются основным продуктом гидролиза липидов в кишечнике. Всасывание их в кровь происходит в виде мицелярных комплексов, состоящих из жирных и желчных кислот, фосфолипидов и холестерола.

Для нормальной жизнедеятельности необходимо присутствие в пище незаменимых жирных кислот, которые не синтезируются в организме. К таким кислотам относятся олеиновая, линолевая, линоленовая и арахидоновая. Суточная потребность в них составляет 10—12 г. Линолевая и линоленовая кислоты содержатся в основном в растительных жирах, арахидоновая – только в животных. Дефицит незаменимых жирных кислот в пище приводит к замедлению роста и развития организма, снижению репродуктивной функции и различным поражениям кожи. Полиненасыщенные жирные кислоты необходимы для построения и сохранения липопротеидных клеточных мембран, для синтеза простагландинов и половых гормонов.

Жиры могут образовываться в организме из углеводов и белков при их избыточном поступлении извне. Значительное количество жиров человек получает с колбасами – от 2040%, салом – 90% , сливочным маслом – 7282% , сырами – 1550%, сметаной – 2030%.

В среднем человеку требуется 70—125 г жира в сутки, из которого 70% животного, а 30% растительного. Лишний жир откладывается в организме в определенных частях тела в виде жирового депо.

Холестерол относится к классу стеринов, включающему также стероидные гормоны, витамин D и желчные кислоты. Холестерол, поступает в организм с пищей и синтезируется в самом организме. При этом значительная его часть синтезируется в печени, где происходит и его расщепление на желчные кислоты, выделяемых в составе желчи в кишечник. Транспорт холестерола в крови осуществляется в составе липопротеидов высокой, низкой и очень низкой плотности.

Повышение фракции липопротеидов низкой плотности несет опасность развития атеросклероза вследствие их накопления в сосудистой стенке. Липопротеиды высокой плотности, напротив, способствуют удалению холестерола из клеток,

Суммарное количество жиров в организме человека составляет 1020% массы тела. Увеличение массы тела на 2025% считается предельно допустимой физиологической границей. Более чем у 30% населения экономически развитых стран масса тела превышает нормальные показатели.

studfile.net

Функции липидов в клетке, свойства и строение

Липиды — это жироподобные элементы, которые наполняют энергией все клетки в организме человека.

Функции жировых молекул зависят от их плотности. В каждой клеточной мембране строительным элементом выступают липиды.

Свойства и строительные особенности

Молекулы липидов не растворимы в составе воды и относятся к органическим биологическим соединениям, к молекулам простого класса строения.

В данной категории находятся такие типы молекул:

  • Фосфолипид — это жироподобные нерастворимые в жидкости соединения, имеют в своем строении полярные головки молекулы, а их хвосты не имеют полярности. По этой причине их непроглядности и обеспечивается строительная функция в формировании клеточных мембран. В мембранах клеток, фосфолипиды выполняют регуляторную функцию. Данные соединения схожи по строению с жирами, но остаток фосфорной кислоты замещается в пару молекул фосфолипидов;
  • Молекулы воска относятся к длинно цепочным эфирным соединениям. Это высококалорийная, энергетическая наполняющая клеточной мембраны. Благодаря данной функции воска, птицы, которые плавают по воде, не погружаются в нее. Воск трудно растворим в жидкости. К классу липидов воска причислены — холестерол, женские и мужские половые гормоны, а также витамин Д;
  • Производные молекулы — терпены, которые достаточно широко представлены в природе. В большей части данный вид липидов находится в маслах эфирных растений. Структура терпенов — это моноциклические или же бициклические производные, которые в своем составе имеют ионы кислорода;
  • Молекулы липопротеинов. Это жиры, которые находятся в организме человека, и не имеющие ковалентной взаимосвязи с липидами. Синтезируются в организме почти 80,0% липопротеиды высокой молекулярной плотности. Функциональная обязанность липопротеидов в организме — это строительная функция клеточных мембран, а также транспортная доставка в них жиров. Липопротеиды низкой молекулярной плотности и очень низкой молекулярной плотности, в организм человека попадает с питанием. Большую часть низкоплотных липопротеидов имеет мясо животных, а также их жир, и продукция молочного производства. Поступление низкоплотных липопротеидов не должно быть выше, чем 20,0%. При нарушении липидного баланса происходит развитие патологий сердечного органа, а также нарушения в работе системы кровотока, что провоцирует развитие системного атеросклероза, патологии тромбоза, инфаркта миокарда и мозгового инсульта;
  • Виды липидоподобных соединений — гликолипиды. Функции липидных компонентов отвечают за рецепторы биологических соединений и веществ. В их состав входят молекулярные остатки углеводов вместе с остатком жирных кислот. Биологические соединения гликолипидов находятся в наружной части мембраны клетки плазменной крови. В клетке липиды выполняют функцию защиты и энергетического ее запаса.

Липидные соединения обязательно должны находиться в плазменной крови человека, потому что жир — это калорийный запас человека, который обеспечивает ему активность, и активирует все защитные функции организма от влияния внешних факторов на него.

Баланс липидных соединений в крови обеспечивает здоровье и предохраняет человека от развития серьезных патологий.

Функции липидовк содержанию ↑

Основные функций липидов

Основные функциональные роли липопротеидов в организме:

  • Транспортная специфика;
  • Функциональность энергетического резерва;
  • Запасающая функциональность;
  • Структурная специфика;
  • Защитная;
  • Функционирование терморегуляции;
  • Регуляторная сущность.

Жиры, как форма клетки выполняю строительную функцию в мембранах, и обеспечивают работу всех структурных в ней элементов.

Жировая прослойка на теле человека относится к липидным структурам с особой ролью.

У женщин — это дополнительный энергетический резерв для вынашивания младенца при беременности. 30,0% всей необходимой энергии для активности человека дают липиды, а также они являются и источником внутренней (эндогенной) воды в организме человека.

Липопротеиды транспортируют по организму жирорастворимые виды витаминов, а также защищают человеческое тело от лишней потери тепла.

При помощи липопротеидов происходит синтезирование половых гормонов и витамина Д.к содержанию ↑

Второстепенные

Кроме основных липидных функций, существуют второстепенные типы:

ФункцииХарактеристики
ФерментативнаяМеханизм ферментативной миссии:
· осуществлять биосинтез ферментов совместно липидоподобными соединениями;
· защита слизистой кишечника, от разрушения ее ферментами клеток поджелудочной железы;
· уничтожение ферментов происходит при помощи липидов, в составе которых фосфолипиды и большая часть холестерола.
СигнальнаяВыполняют сигнальную роль гликолипиды. Механизм данной функции:
· передача импульсов между волокнами нервной системы;
· распознавание импульсов на внутриклеточном уровне, которые подают липидоподобные соединения;
· проводить отбор в составе крови необходимые элементы, что нужны клеткам.
РегуляторнаяЛипиды не выполняют регуляторные обязанности в организме, но они входят в состав соединений, которые выполняют эти процессы:
· пример регуляторной миссии - это клеточная мембрана, имеющая режим пропуска полезных элементов в клетку;
· также пример регуляции - это гормоны стероидного типа, отвечающие за обменные процессы;
· гормоны, регулирующие репродуктивную функцию у человека;
· иммунная система, что регулирует защиту.
к содержанию ↑

Из чего состоят клеточные мембраны?

Основная функция жира — это построение мембран клеток.

При формировании мембран принимают участие такие типы липидных соединений:

  • Жироподобный спирт — холестерол;
  • Липидо-углеводное соединение гликолипиды;
  • Соединения карбоновых кислот и спиртовых эфиров — фосфолипиды.

Мембрана по своей структуре двухслойная и жиры находятся в пространстве между клеткой и наружной средой. Такая структура клеточной мембраны позволяет ей не терять форму и увеличивает ее крепость.

Транспортная функция осуществляется соединениями холестерола и белков — липопротеидами.

Транспортируют липопротеиды преимущественно молекулы триглицеридов (основной энергоресурс в клетках) и молекулы холестерола (построечный материал для мембраны). Жиры нерастворимы в составе плазменной крови.

Ядро липопротеида имеет в составе молекулы триглицеридов и эфирный холестерин, а оболочка состоит из молекул жира и белка.

Эта структура дает выполнить суть транспортировщика жира, а также на обратном пути выполнить транспортную миссию по перевозке остатков холестерина обратно в клетки печени для их катаболизма и выхода их за пределы организма.

Такую функцию могут выполнить высокомолекулярные липопротеиды.

Ядро липопротеида имеет в составе молекулы триглицеридов и эфирный холестерин к содержанию ↑

Заключение

Все необходимые для функционирования липиды, клетки печени синтезирует самостоятельно. Не синтезируются только витамины, растворимые в жире и полиненасыщенные жиром кислоты.

Они поступают с продуктами питания. Функции липидов — это доставка по системе кровотока, недостающих питательных компонентов, во все клеточные структуры.

Наибольшее количество липидов находятся в клетках нервных волокон, в клетках головного мозга и в жировой прослойке.

holesterin.wiki

Липидный обмен — Википедия

Липидный обмен, или метаболизм липидов — сложный биохимический и физиологический процесс, происходящий в некоторых клетках живых организмов.

Липидный обмен включает в себя следующие процессы:

Термин «липиды» объединяет вещества, обладающие общим физическим свойством — гидрофобностью, то есть нерастворимостью в воде. Однако такое определение в настоящее время является не совсем корректным ввиду, того, что некоторые группы (триацилглицерины, фосфолипиды, сфинголипиды и др.) проявляют себя как амфифильные или дифильные соединения, то есть способные растворяться как в полярных веществах (гидрофильность), так и в неполярных (гидрофобность). По структуре липиды настолько разнообразны, что у них отсутствует общий признак химического строения. Липиды разделяют на классы, в которые объединяют молекулы, имеющие сходное химическое строение и общие биологические свойства.

Основную массу липидов в организме составляют жиры — триацилглицеролы, служащие формой депонирования энергии. Жиры располагаются преимущественно в подкожной жировой ткани и выполняют также функции теплоизоляционной и механической защиты.

Фосфолипиды — большой класс липидов, получивший своё название из-за остатка фосфорной кислоты, придающего им свойства амфифильности. Благодаря этому свойству фосфолипиды формируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому химические процессы в клетке разделены и ориентированы в пространстве, что необходимо для регуляции метаболизма.

Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол — важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и действуют, как и гормоны, в очень низких концентрациях. Например, тромбоцитактивирующий фактор — фосфолипид особой структуры — оказывает сильное влияние на агрегацию тромбоцитов в концентрации 10-12 М; эйкозаноиды, производные полиеновых жирных кислот, вырабатываемые почти всеми типами клеток, вызывают разнообразные биологические эффекты в концентрациях не более 10-9 М. Из приведённых примеров следует, что липиды обладают широким спектром биологических функций.

В тканях человека количество разных классов липидов существенно различается. В жировой ткани жиры составляют до 75 % сухого веса. В нервной ткани липидов содержится до 50 % сухого веса, основные из них фосфолипиды и сфингомиелины (30 %), холестерол (10 %), ганглиозиды и цереброзиды (7 %). В печени общее количество липидов в норме не превышает 10—13 %.

Нарушения обмена липидов приводят к развитию многих заболеваний, но среди людей наиболее распространены два из них — ожирение и атеросклероз.

Расщепление, переваривание и всасывание пищевых липидов[править | править код]

Суточная потребность человека в жирах составляет 70—80 г, хотя в пищевом рационе их содержание может колебаться от 80 до 130 г.

Переваривание липидов в желудке[править | править код]

В желудке имеется фермент липаза, способный катализировать расщепление триацилглицеролов. Однако оптимальной средой её действия является среда, близкая к нейтральной. Поэтому липаза в желудке у взрослых людей практически неактивна из-за малых значений pH.

Однако у детей ситуация обстоит несколько по-другому: желудок детей имеет при рождении среду, близкую к нейтральной (pH (среднее) = 5,5). Это явление обусловлено основным продуктом питания детей — молоком (содержит белки и жирных кислоты (количество углерода меньше 14)). Так, фермент липаза выполняет ключевую роль в метаболизме липидов у детей[источник не указан 278 дней].

Переваривание липидов в кишечнике[править | править код]

В двенадцатиперстной кишке пища подвергается действию желчи и сока поджелудочной железы. На первом этапе там происходит эмульгирование жиров.

Эмульгирование жиров[править | править код]

Жиры составляют до 90 % липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка» (лингвальная (лат. lingua — язык) липаза). Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1—2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.

Так как жиры — нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот. Жёлчные кислоты в основном конъюгированные: таурохолевая, гликохолевая и другие кислоты.

Гормоны, активирующие переваривание жиров[править | править код]

При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин — гормон пептидной природы, стимулирующий секрецию гидрокарбоната (НСО3-) в сок поджелудочной железы.

Нарушения переваривания и всасывания жиров[править | править код]

Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них — нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.

Нарушение секреции сока поджелудочной железы и, следовательно, недостаточная секреция панкреатической липазы также приводят к снижению скорости гидролиза жиров. В обоих случаях нарушение переваривания и всасывания жиров приводит к увеличению количества жиров в фекалиях — возникает стеаторея (жирный стул). В норме содержание жиров в фекалиях составляет не более 5 %. При стеаторее нарушается всасывание жирорастворимых витаминов (A, D, E, К) и незаменимых жирных кислот, поэтому при длительно текущей стеаторее развивается недостаточность этих незаменимых факторов питания с соответствующими клиническими симптомами. При нарушении переваривания жиров плохо перевариваются и вещества нелипидной природы, так как жир обволакивает частицы пищи и препятствует действию на них ферментов.

Всасывание липидов в кишечнике[править | править код]

Ресинтез жиров в слизистой оболочке тонкого кишечника[править | править код]

Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе триацилглицеринов. Для этого в эндоплазматическом ретикулуме энтероцитов работают специальные ферменты

Факторы, влияющие на всасывание липидов[править | править код]

Катаболизм липидов[править | править код]

Катаболизм липидов — совокупность всех катаболических процессов липидов, включающая несколько стадий:

Липолиз[править | править код]

Липолиз — катаболический процесс, результатом которого является расщепление жиров, происходящее под действием фермента липазы.

β-Окисление жирных кислот[править | править код]

Процесс β-окисления высших жирных кислот (ВЖК) складывается из следующих этапов:

  • активация ВЖК на наружной поверхности мембраны митохондрий при участии АТФ, кофермента А и ионов магния с образованием активной формы ВЖК (ацил — КоА).
  • транспорт жирных кислот внутрь митохондрий возможен при присоединении активной формы жирной кислоты к карнитину, находящемуся на наружной поверхности внутренней мембраны митохондрий. Образуется ацил-карнитин, обладающий способностью проходить через мембрану. На внутренней поверхности комплекс распадается и карнитин возвращается на наружную поверхность мембраны.
  • внутримитохондриальное окисление жирных кислот состоит из последовательных ферментативных реакций. В результате одного завершенного цикла окисления происходит отщепление от жирной кислоты одной молекулы ацетил-КоА, то есть укорочение жирнокислотной цепи на два углеродных атома. При этом в результате двух дегидрогеназных реакций восстанавливается ФАД до ФАДН2 и НАД+ до НАДН2. Таким образом завершая 1 цикл β—окисления ВЖК, в результате которого ВЖК укоротилось на 2 углеродных звена. При β-окислении выделилось 5АТФ и 12АТФ выделилось при окислении ацетил-КоА в цикле Кребса и сопряженных с ним ферментов дыхательной цепи. Окисление ВЖК будет происходить циклически одинаково, но только до последней стадии — стадии превращения масляной кислоты (бутирил-КоА), которая имеет свои особенности, которые необходимо учитывать при подсчёте суммарного энергетического эффекта окисления ВЖК, когда в результате одного цикла образуется 2 молекулы ацетил-КоА, одна из них проходила β-окисление с выделением 5АТФ, а другая нет.

ω-Окисление жирных кислот[править | править код]

Хотя для жирных кислот наиболее характерно β-окисление, встречаются также два других типа окисления: α-и ω-окисления. Окисление жирных кислот с длинной цепью до 2-оксикислот и затем до жирных кислот с числом атомов углерода на один меньше, чем в исходном субстрате, было показано в микросомах мозга и других тканях, а также в растениях. 2-Оксикислоты с длинной цепью являются компонентами липидов мозга.

Окисление ненасыщенных жирных кислот[править | править код]

Около половины жирных кислот в организме человека ненасыщенные. β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и четвёртым атомами углерода. Затем фермент еноил-КоА изомераза перемещает двойную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. В этом цикле β-окисления первая реакция дегидрирования не происходит, так как двойная связь в радикале жирной кислоты уже имеется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.

Нарушения окисления жирных кислот[править | править код]

Нарушение переноса жирных кислот в митохондрии.

Скорость переноса жирных кислот внутрь митохондрий, а следовательно и скорость процесса β-окисления, зависит от доступности карнитина и скорости работы фермента карнитинацилтрансферазы I.

β-Окисление могут нарушать следующие факторы:

  • длительный гемодиализ, в ходе которого организм теряет карнитин;
  • длительная ацидурия, при которой карнитин выводится как основание с органическими кислотами;
  • лечение больных сахарным диабетом препаратами сульфонилмочевины, ингибирующими карнитинацилтрансферазу I;
  • низкая активность ферментов, синтезирующих карнитин;
  • наследственные дефекты карнитинацил-трансферазы I.

При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом глюкоза сохраняется для окисления в мозге и эритроцитах. Уже через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе.

Кислород, необходимый организму для функционирования ЦПЭ и многих других реакций, является одновременно и токсическим веществом, если из него образуются так называемые активные формы.

К активным формам кислорода относят:

Липогенез[править | править код]

Липогенез — процесс синтеза жирных кислот, основным источником которого является углеводы.

С пищей в организм поступают разнообразные жирные кислоты, в том числе и незаменимые. Значительная часть заменимых жирных кислот синтезируется в печени, в меньшей степени — в жировой ткани и лактирующей молочной железе. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. Таким образом, избыток углеводов, поступающих в организм, трансформируется в жирные кислоты, а затем в жиры.

Синтез кетоновых тел[править | править код]

Все кетоновые тела берут начало от ацетоацетил-КоА, который образуется при конденсации 2-х молекул ацетил-КоА по принципу «голова в хвост». Реакция конденсации происходит в митохондриях. В печени ацетоацетил-КоА взаимодействует ещё с одной молекулой ацетил-КоА и превращается в ГОМГ-КоА- важное промежуточное вещество для синтеза холестерола и стероидов.

Организм получает жирные кислоты из пищи и путём липогенеза из ацетил-КоА, образующегося из углеводов и некоторых аминокислот. Состав смеси жирных кислот пищи существенно варьирует по степени ненасыщенности и длине цепи. Липогенез у высших животных включает только образование пальмитата, из которого образуются другие насыщенные и мононенасыщенные кислоты. Из смеси имеющихся жирных кислот в печени животного образуется свойственный данному виду набор жирных кислот; однако на характере синтезируемых жирных кислот сказывается также и диета. Процессы утилизации жирных кислот пищи включают укорочение и удлинение углеродного скелета, так же как и введение двойной связи.

Фосфолипиды выполняют ряд важных биологических функций. Как большинство полярных липидов, они являются амфифильными соединениями, несущими гидрофобные и гидрофильные группы. Некоторые фосфолипиды, например фосфатидилхолин, представляют собой диполярные ионы, обладающие катионной и анионной группами, и являются основными компонентами клеточных мембранных систем. Например, в миелиновом волокне нерва фосфолипиды и цереброзиды составляют приблизительно 60 % сухого веса.

Распределение и обмен[править | править код]

Среди липидов тела фосфолипиды распределены неравномерно. Богатыми источниками фосфолипидов являются липиды тканей различных желез, в особенности печени, а также плазма крови, где они могут составлять до половины всех липидов. Фосфолипиды являются также преобладающими липидами в желтках птичьих яиц и в семенах бобовых растений. Обмен различных фосфолипидов в определённых местах животного организма изучали с использованием различных изотопов, наиболее часто 32Р. Период полупревращения этих липидов колеблется от менее одного дня для фосфатидилхолина печени до более 200 сут для фосфатидилэтаноламина мозга.

Образование[править | править код]

Холестерол — основной стероид организма животных. У взрослого человека содержание холестерола составляет 140—150 г. Около 93 % стероида входит в состав мембран и 7 % находится в жидкостях организма. Холестерол увеличивает микровязкость мембран и снижает их проницаемость для Н2О и водорастворимых веществ. В крови он представлен в виде свободного холестерола, входящего в оболочку липопротеинов, и его эфиров, которые вместе с ТАГ составляют внутреннее содержимое этих частиц. Содержание холестерола и его эфиров в составе хиломикронов составляет ~ 5 %, в ЛПОНП ~10 %, в ЛПНП ~ 50—60 % и в ЛПВП ~ 20—30 %. Концентрация холестерола в сыворотке крови взрослого человека в норме равна ~ 200 мг/дл или 5,2 ммоль/л, что соответствует холестериновому равновесию, когда количество холестерола, поступающего в организм, равно количеству холестерола выводимому из организма. Если концентрация холестерола в крови выше нормы, то это указывает на задержку его в организме и является фактором риска развития атеросклероза.

Холестерол является предшественником всех стероидов животного организма:

Холестериновое равновесие поддерживается благодаря тому, что с одной стороны холестерол поступает с пищей (~ 0,3—0,5 г/с) и синтезируется в печени или других тканях (~ 0,5 г/с), а с другой — выводится с калом в виде жёлчных кислот, холестерола желчи, продуктов катаболизма стероидных гормонов, с кожным салом, в составе мембран слущенного эпителия (~ 1,0 г/с)

Биосинтез холестерола[править | править код]

Транспорт холестерола[править | править код]

Эйкозаноиды, включающие в себя простагландины, тромбоксаны, лейкотриены и ряд других веществ, — высокоактивные регуляторы клеточных функций. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как «гормоны местного действия», влияя на метаболизм продуцирующей их клетки по аутокринному механизму, и на окружающие клетки — по паракринному механизму. Эйкозаноиды участвуют во многих процессах: регулируют тонус гладкомышечных клеток и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например, бронхиальной астме и аллергическим реакциям.

Субстраты для синтеза эйкозаноидов[править | править код]

Основным субстратом для синтеза эйкозаноидов является арахидоновая (ω-6-эйкозатетраеновая) кислота, содержащая 4 двойные связи при углеродных атомах (5, 8, 11, 14). Она может поступать с пищей или синтезироваться из линолевой кислоты. В небольших количествах для синтеза эйкозаноидов могут использоваться ω-6-эйкозатриеновая кислота с тремя двойными связями (5, 8, 11) и ω-3-эйкозапентаеновая кислота, в составе которой имеется 5 двойных связей в положениях 5, 8, 11, 14, 17. Обе минорные эйкозановые кислоты либо поступают с пищей, либо синтезируются из олеиновой и линоленовой кислот соответственно.

Синтез лейкотриенов, ГЭТЕ(гидроксиэйкозатетроеноатов), липоксинов[править | править код]

Синтез лейкотриенов идёт по пути, отличному от пути синтеза простагландинов, и начинается с образования гидроксипероксидов — гидропероксидэйкозатетраеноатов (ГПЭТЕ). Эти вещества или восстанавливаются с образованием гидроксиэйкозатетроеноатов (ГЭТЕ) или превращаются в лейкотриены или липоксины. ГЭТЕ отличаются по положению гидроксильной группы у 5-го, 12-го или 15-го атома углерода, например: 5-ГЭТЕ, 12-ГЭТЕ.

Липоксины (например, основной липоксин А4) включают 4 сопряжённых двойных связи и 3 гидроксильных группы.

Синтез липоксинов начинается с действия на арахидоновую кислоту 15-липоксигеназы, затем происходит ряд реакций, приводящих к образованию липоксина А4

Клинические аспекты обмена эйкозаноидов[править | править код]

Медленно реагирующая субстанция при анафилаксии (МРВ-А) представляет собой смесь лейкотриенов С4, D4 и Е4. Эта смесь в 100—1000 раз более эффективна, чем гистамин или простагландины как фактор, вызывающий сокращение гладкой мускулатуры бронхов. Эти лейкотриены вместе с лейкотрином В4 повышают проницаемость кровеносных сосудов и вызывают приток и активацию лейкоцитов, а также, являются важными регуляторами при многих заболеваниях, в развитии которых участвуют воспалительные процессы или быстрые аллергические реакции (например, при бронхиальной астме).

Использование производных эйкозаноидов в качестве лекарственных средств[править | править код]

Хотя действие всех типов эйкозаноидов до конца не изучено, имеются примеры успешного использования лекарств — аналогов эйкозаноидов для лечения различных заболеваний. Например, аналоги PG Е1 и PG Е2 подавляют секрецию соляной кислоты в желудке, блокируя гистаминовые рецепторы II типа в клетках слизистой оболочки желудка. Эти лекарства, известные как Н2-блокаторы, ускоряют заживление язв желудка и двенадцатиперстной кишки. Способность PG Е2 и PG F2α стимулировать сокращение мускулатуры матки используют для стимуляции родовой деятельности.

Сфинголипиды — производные церамида, образующегося в результате соединения аминоспирта сфингозина и жирной кислоты. В группу сфинголипидов входят сфингомиелины и гликосфинголипиды.

Сфингомиелины находятся в мембранах клеток различных тканей, но наибольшее их количество содержится в нервной ткани. Сфингомиелины миелиновых оболочек содержат в основном жирные кислоты с длинной цепью: лигноцериновую и нервоновую кислоты, а сфингомиелин серого вещества мозга содержит преимущественно стеариновую кислоту.

Синтез церамида и его производных[править | править код]

Катаболизм сфингомиелина и его нарушения[править | править код]

В лизосомах находятся ферменты, способные гидролизовать любые компоненты клеток. Эти ферменты называют кислыми гидролазами, так как они активны в кислой среде.

В условиях положительного калорийного баланса значительная часть потенциальной энергии пищевых продуктов запасается в виде энергии гликогена или жира. Во многих тканях даже при нормальном питании, не говоря уже о состояниях калорийного дефицита или голодания, окисляются преимущественно жирные кислоты, а не глюкоза. Причина этого — необходимость сохранения глюкозы для тех тканей (например, для мозга или эритроцитов), которые постоянно в ней нуждаются. Следовательно, регуляторные механизмы, часто с участием гормонов, должны обеспечивать постоянное снабжение всех тканей подходящим топливом в условиях как нормального питания, так и голодания. Сбой в этих механизмах происходит при гормональном дисбалансе (например, в условиях недостатка инсулина при диабете), при нарушении метаболизма в период интенсивной лактации (например, при кетозе крупного рогатого скота) или из-за усиления обменных процессов при беременности (например, при токсикозе беременности у овец). Такие состояния представляют собой патологические отклонения при синдроме голодания; он наблюдается при многих заболеваниях, сопровождающихся снижением аппетита.

Тучность[править | править код]

Абеталипопротеинемия[править | править код]

Это относительно редкое генетическое заболевание характеризуется отсутствием в плазме β-липопротеидов плотности, меньшей чем 1,063 и связано с интенсивной демиелинизацией нервных волокон. Апо-В отсутствует в плазме, так же как и в хиломикронах, ЛПОНП и ЛПНП. Уровень триацилглицеринов и холестерина плазмы очень низок. Это свидетельствует о необходимости апо-В для нормального всасывания, синтеза и транспорта триацилглицеринов и холестерина из кишечника и печени. Липиды накапливаются в клетках слизистой оболочки кишечных ворсинок, при этом наблюдается акантоцитоз — сферическая деформация эритроцитов. Более 80 % эритроцитов являются акантоцитами, или, как их иначе называют, зубчатыми эритроцитами (от греч. akantha — зубец, шип).

Кахексия[править | править код]

Недостаточное потребление калорий может привести и к полному исчезновению жировой ткани из подкожного и сальникового депо. Это может происходить при опухолях или хроническом инфекционном заболевании, при недостаточном питании или при метаболических нарушениях, таких, как диабет или увеличение щитовидной железы. В экспериментах было показано, что повреждение определённых областей гипоталамуса вызывает анорексию даже у предварительно голодавшего животного. Для анорексии, в происхождении которой имеет значение психогенный компонент, используют термин «anorexia nervosa» (нейрогенная анорексия).

В то время как потеря липидов тела при болезни щитовидной железы связана частично с избыточной мобилизацией резервных липидов, существенной причиной кахексии при голодании, недостаточности тиамина или диабете является сниженная способность организма синтезировать жирные кислоты из углеводных предшественников.

Атеросклероз[править | править код]

Атеросклероз (от греч. ἀθέρος — мякина, кашица + σκληρός — твёрдый, плотный) — хроническое заболевание артерий эластического и мышечно-эластического типа, возникающее вследствие нарушения липидного обмена и сопровождающееся отложением холестерина и некоторых фракций липопротеидов в интиме сосудов. Отложения формируются в виде атероматозных бляшек. Последующее разрастание в них соединительной ткани (склероз), и кальциноз стенки сосуда приводят к деформации и сужению просвета вплоть до облитерации (закупорки). Важно различать атеросклероз от артериосклероза Менкеберга, другой формы склеротических поражений артерий, для которой характерно отложение солей кальция в средней оболочке артерий, диффузность поражения (отсутствие бляшек), развитие аневризм (а не закупорки) сосудов. Атеросклероз сосудов ведет к развитию ишемической болезни сердца.

Молекулярные механизмы патогенеза атеросклероза[править | править код]

Таганович и др. Биологическая химия. — Минск: Высшая школа, 2013. — ISBN 978-985-06-2321-8.

ru.wikipedia.org

особенности их строения и значение для организма

Липиды – это важнейшие органические соединения, играющие огромную роль в обеспечении жизнедеятельности организма. Без них невозможно представить не одного процесса, протекающего в нашем теле. Липиды входят в состав мембран клеток, создают механическую защиту органам, являются предшественниками биологически активных веществ – и это не весь список функций. Что это за соединения? Какова классификация и классы липидов?

Особенности нахождения в организме

Липиды относятся к нерастворимым в воде веществам. Большая их часть является строительным компонентом клеток, но эти вещества содержатся и в свободной форме. Для переноса липидов в крови требуются особые транспортные системы. Некоторые соединения существуют комплексно с белками – альбуминами.

Большинство образует водорастворимые липопротеины, которые состоят из какого-либо липида и апопротеина. Таким образом транспортируются холестерин и его эфиры, триглицериды и фосфолипиды. Некоторые из липидов принимают участие в формировании наночастиц – липосом.

Классификация

Вещества липидной природы удобно классифицировать по структурным особенностям. Выделяют простые и сложные. Эти классы липидов имеют огромные отличия.

Простые отличаются тем, что содержат три стандартных химических элемента – это кислород, углерод и водород. К этой группе относятся жирные кислоты, спирты и альдегиды, а также воски и триглицериды.

Сложные вещества имеют дополнительные компоненты – серу, фосфор, азот и другие. Они, в свою очередь, делятся на полярные и нейтральные. Среди полярных – фосфолипиды, содержащие остаток фосфорной кислоты. Также к ним относятся сфинголипиды, которые являются производными аминоспиртов. Нейтральные липиды – это ацилглицериды, эфиры стеринов и церамиды.

Чем отличается биохимия? Простые липиды включаю в себя лишь спирт и жирные кислоты, а сложные соответствуют своему названию. Помимо спирта, в их составе высокомолекулярные жиры, а также углеводы, остатки фосфорной кислоты. Это не единственная классификация липидов.

Строение жиров

Чем отличаются эти вещества? Биохимия изучила строение их молекул. У насыщенных жиров все химические связи заполнены молекулами водорода, а у ненасыщенных – нет. За счет этого отличается и их консистенция – ненасыщенные более жидкие.

Ненасыщенные жиры дополнительно можно классифицировать на мононенасыщенные и полиненасыщенные. Первые имеют лишь одно вакантное место для водорода, а вторые – несколько, таково их строение.

Мононенасыщенные жиры имеются в таких маслах, как оливковое, рапсовое, а также в рыбьем жире. Полиненасыщенные попадают в организм с подсолнечным маслом, жирной рыбой, орехами.

Липопротеины

Как говорилось выше, липиды нерастворимы в воде и переносятся специальными транспортерами. Комплекс с апопротеинами получил название – липопротеин. Биохимия этих веществ отличается плотностью и размерами молекул.

Липопротеины низкой плотности имеют возможность проникать к уязвимым стенкам сосудов и запускать атеросклеротический процесс. Вещества высокой плотности получили название – антиатерогенные, так как препятствуют развитию заболевания. Именно поэтому важен баланс между этими соединениями. Таблица отражает разность плотностей этих липопротеинов.

КлассПлотность
ЛПОНП0,96-1,006
ЛПНП1,019-1,063
ЛПВП1,063-1,200

Контроль этих веществ важен для своевременной профилактики атеросклероза. Развернутый анализ на липопротеины показан людям, склонным к этой патологии (факторы риска, наследственность). Показанием также является высокий уровень общего холестерина в крови.

При выявлении атерогенных фракций назначается специальная диета, которая зависит от индивидуальных особенностей. Цель ее – сократить поступление вредных продуктов – колбас, маргарина, майонеза и так далее. Людям с сопутствующим ожирением следует уменьшить общее количество калорий в сутки.

Роль в организме

Какие значения вещества имеют в организме? Липиды участвуют практически во всех процессах в организме, поэтому их роль не ограничивается одной функцией. Вещества поддерживают жизнедеятельность уже на молекулярном и клеточном уровне.

Структурная функция

Представителями этой группы веществ являются фосфолипиды, которые входят в состав бислоя мембраны клеток. Таким образом, липиды являются основным структурным веществом мембран. Дополнительным их компонентом является холестерин, отвечающий за свойство текучести.

Биохимия изучила, что в мембранах липиды располагаются особым образом. Головки молекул являются гидрофобными и образуют одноименный слой, а хвостики – гидрофильные. Мембрана состоит из двух слоев липидов, которые притягиваются гидрофильными хвостиками. Так, формируется своеобразный барьер. Гидрофобный слой имеет огромную значимость, так как он обладает свойством непроницаемости для полярных соединений и ионов.

Теплоизоляция и защита

Жировые клетки накапливаются в подкожной клетчатке у теплокровных, благодаря чему потери тепла сокращаются. Многие органы имеют дополнительную прослойку, которая выполняет функцию механической защиты.

Энергетическая функция

Липиды – запасные источники энергии. При их окислении выделяется больше энергии, чем при таком же процессе, происходящем с углеводами. Биохимия проста – жир накапливается в виде капель, локализованных в клетках, и при необходимости мобилизуется на энергетические нужды.

Регуляторная функция

Велико значение липидов и для стабилизации всех процессов. Происходит это за счет того, что липиды формируют основу важных молекул. Так, жирорастворимые витамины А, Д, Е и К принимают участие при обменных и регенераторных процессах. Кроме того, витамин Е отвечает за правильное созревание половых клеток, а К обеспечивает выработку плазменных факторов свертывания, отвечая за остановку кровотечения и поддержание оптимальной реологии.

Большинство гормонов имеют липидное строение (стероидные). Также эти вещества входят в состав эйкозаноидов. Гормоны участвуют в регуляции метаболизма, половой функции, регенерации. Они переносятся кровью, за счет чего могут действовать дистально, то есть далеко от места формирования.

Эйкозаноиды в зависимости от механизма образования делятся на простагландины, тромбоксаны и лейкотриены. Все эти вещества чрезвычайно важны – они участвуют в формировании воспалительного процесса, свертывании крови, регулируют артериальное давление и половую функцию, а также являются непосредственными участниками аллергической реакции.

Липиды в рационе

Важно поступление липидов с пищей. Преимущественно в продуктах питания содержатся триглицериды, которые и являются важнейшим источником энергии. Обязательна поставка насыщенных жирных кислот, которые содержатся в мясе, молоке. Ненасыщенные же содержатся в растительных маслах, семечках, орехах. С пищей должен поступать холестерол, имеющийся в животных продуктах – мясе, яйца, сливочном масле, однако, не стоит употреблять их в чрезмерных количествах.

Питание должно быть сбалансированным. Оптимальным считается соотношение белков, жиров и углеводов – 1:1:4. Корректировки могут вноситься диетологом индивидуально для каждого случая.

Классификация основывается на особенностях молекул (строение). Все эти вещества участвуют в поддержании гомеостаза, то есть постоянства, в организме. Без них существование невозможно. На основе природных липидов, биохимия которых тщательно изучена, были синтезированы лекарственные препараты, что успешно применяются в терапии.

Например, глюкокортикоиды, использующиеся как противовоспалительное, противоаллергическое и иммунодепрессивное средство, созданы на основе природных стероидов. В настоящее время они помогают спасать жизни пациентов даже в неотложных ситуациях. Таких примеров можно привести множество. Липиды – незаменимые помощники нашего организма, без которых его бы даже не существовало.

vseoholesterine.ru

липиды — урок. Биология, Общие биологические закономерности (9–11 класс).

Липиды — обширная группа жироподобных веществ (сложных эфиров жирных кислот и трёхатомного спирта глицерина), нерастворимых в воде. К липидам относят жиры, воски, фосфолипиды и стероиды (липиды, не содержащие жирных кислот).

Липиды состоят из атомов водорода, кислорода и углерода.

Липиды присутствуют во всех без исключения клетках, но их содержание в разных клетках сильно варьирует (от \(2\)–\(3\) до \(50\)–\(90\) %).

Липиды могут образовывать сложные соединения с веществами других классов, например с белками (липопротеины) и с углеводами (гликолипиды).

Функции липидов:

  • запасающая — жиры являются основной формой запасания липидов в клетке.
  • Энергетическая — половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров (при окислении они дают более чем в два раза больше энергии по сравнению с углеводами).
  • Жиры используются и как источник воды (при окислении \(1\) г жира образуется более \(1\) г воды).
  • Защитная — подкожный жировой слой защищает организм от механических повреждений.
  • Структурная — фосфолипиды входят в состав клеточных мембран.
  • Теплоизоляционная — подкожный жир помогает сохранить тепло.
  • Электроизоляционная — миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов.
  • Гормональная (регуляторная) — гормон надпочечников (кортизон) и половые гормоны (прогестерон и тестостерон) являются стероидами.
  • Смазывающая — воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налётом покрыты листья многих растений, воск используется при строительстве пчелиных сот.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

www.yaklass.ru

1 Биологические функции липидов

19

ЛИПИДЫ

ЛИПИДЫ - это разнородная группа природных соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге, дающих при гидролизе высокомолекулярные жирные кислоты.

В живом организме липиды выполняют разнообразные функции.

Биологические функции липидов:

1) Структурная

Структурные липиды образуют сложные комплексы с белками и углеводами, из которых построены мембраны клетки и кле­точных структур, участвуют в разнообразных процессах, протекаю­щих в клетке.

2) Запасная (энергетическая)

Запасные липиды (в основном жиры) являются энергетическим резервом организма и участвуют в обменных процессах. В растениях они накапливаются главным образом в плодах и семенах, у животных и рыб — в подкожных жировых тканях и тканях, окру­жающих внутренние органы, а также печени, мозговой и нервной тка­нях. Содержание их зависит от многих факторов (вида, возраста, питания и т. д.) и в отдельных случаях составляет 95—97% всех вы­деляемых липидов.

Калорийность углеводов и белков: ~ 4 ккал/грамм.

Калорийность жира: ~ 9 ккал/грамм.

Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.

3) Защитная

Подкожные жировые ткани предо­храняют животных от охлаждения, а внутренние органы — от меха­нических повреждений.

Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.

Особую группу по своим функциям в живом организме составляют защитные липиды растений — воски и их производные, покрывающие поверхность листьев, семян и плодов.

4) Важный компонент пищевого сырья

Липиды являются важным компонентом пищи, во многом опреде­ляя ее пищевую ценность и вкусовое достоинство. Исключительно велика роль липидов в разнообразных процессах пищевой техноло­гии. Порча зерна и продуктов его переработки при хранении (прогоркание) в первую очередь связана с изменением его липидного комп­лекса. Липиды, выделенные из ряда растений и животных, — основное сырье для получения важнейших пищевых и технических про­дуктов (растительного масла, животных жиров, в том числе сливоч­ного масла, маргарина, глицерина, жирных кислот и др.).

2 Классификация липидов

Общепринятой классификации липидов не существует.

Наибо­лее целесообразно классифицировать липиды в зависимости от их хи­мической природы, биологических функций, а также по отношению к некоторым реагентам, например, к щелочам.

По химическому составу липиды обычно делят на две группы: простые и сложные.

Простые липиды – сложные эфиры жирных кислот и спиртов. К ним относятся жиры, воски и стероиды.

Жиры – эфиры глицерина и высших жирных кислот.

Воски – эфиры высших спиртов алифатического ряда (с длинной углеводной цепью 16-30 атомов С) и высших жирных кислот.

Стероиды – эфиры полициклических спиртов и высших жирных кислот.

Сложные липиды – помимо жирных кислот и спиртов содержат другие компоненты различной химической природы. К ним относятся фосфолипиды и гликолипиды.

Фосфолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с фосфорной кислотой (фосфорная кислота может быть соединена с дополнительным соединением). В зависимости от того, какой спирт входит в состав фосфолипидов, они подразделяются на глицерофосфолипиды (содержат спирт глицерин) и сфингофосфолипиды (содержат спирт сфингозин).

Гликолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с углеводным компонентом. В зависимости от того, какой углеводный компонент входит в состав гликолипидов, они подразделяются на цереброзиды (в качестве углеводного компонента содержат какой-либо моносахарид, дисахарид или небольшой нейтральный гомоолигосахарид) и ганглиозиды (в качестве углеводного компонента содержат кислый гетероолигосахарид).

Иногда в самостоятельную группу липидов (минорные липиды) выделяют жирораство­римые пигменты, стерины, жирорастворимые витамины. Некоторые из этих соединений могут быть отнесены к группе простых (нейтраль­ных) липидов, другие — сложных.

По другой классификации липиды в зависимости от их отношения к щелочам делят на две большие группы: омыляемые и неомыляемые. К группе омыляемых липидов относятся простые и сложные липиды, которые при взаимодействии со щелочами гидролизуются с образова­нием солей высокомолекулярных кислот, получивших название «мы­ла». К группе неомыляемых липидов относятся соединения, не подвергающиеся щелочному гидролизу (стерины, жирорастворимые витамины, простые эфиры и т. д.).

По своим функциям в живом организме липиды делятся на струк­турные, запасные и защитные.

Структурные липиды - главным образом фосфоли­пиды.

Запасные липиды - в основном жиры.

Защитные липиды растений — воски и их производные, покрывающие поверхность листьев, семян и плодов, животных – жиры.

ЖИРЫ

Химическое название жиров - ацилглицерины. Это сложные эфиры глицерина и высших жирных кислот. "Ацил-" - это означает "остаток жирных кислот".

В зависимости от количества ацильных радикалов жиры разделяются на моно-, ди- и триглицериды. Если в составе молекулы 1 радикал жирных кислот, то жир называется МОНОАЦИЛГЛИЦЕРИНОМ. Если в составе молекулы 2 радикала жирных кислот, то жир называется ДИАЦИЛГЛИЦЕРИНОМ. В организме человека и животных преобладают ТРИАЦИЛГЛИЦЕРИНЫ (содержат три радикала жирных кислот).

Три гидроксила глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:

Природные жиры содержат главным образом смешанные триглице-риды, включающие остатки различных кислот.

Так как спирт во всех природных жирах один и тот же — глицерин, наблюдаемые между жирами раз­личия обусловлены исключительно составом жирных кислот.

В жирах обнаружено свыше четырехсот карбоновых кислот раз­личного строения. Однако большинство из них присутствует лишь в незначительном количестве.

Кислоты, содержащиеся в природных жирах, являются монокарбоновыми, постро­ены из неразветвленных углеродных цепей, содержащих чет­ное число углеродных атомов. Кислоты, содержащие нечетное число атомов углерода, имеющие разветвленную углеродную цепочку или содержащие циклические фрагменты, присутствуют в незначительных количествах. Исключение составляют изовалериановая кислота и ряд циклических кислот, содержащихся в не­которых весьма редко встречающихся жирах.

Наиболее распространенные в жирах кислоты содержат от 12 до 18 атомов угле­рода, они часто называются жирными кислотами. В состав многих жиров входят в небольшом количестве низкомолекулярные кислоты (С2—С10). Кислоты с числом атомов углерода выше 24 присут­ствуют в восках.

В состав глицеридов наиболее распространенных жиров в значительном количестве входят ненасыщенные кислоты, содержащие 1—3 двойные связи: олеиновая, линолевая и линоленовая. В жирах животных присутствует арахидоновая кислота, содержащая четыре двойные связи, в жирах рыб и морских животных обнаружены кислоты с пятью, шестью и более двойными связями. Большинство ненасыщенных кислот липидов имеет цис-конфигурацию, двойные связи у них изолированы или разделены метиленовой (—СН2—) груп­пой.

Из всех непредельных кислот, содержащихся в природных жирах, наиболее распространена олеиновая кислота. В очень многих жирах олеиновая кислота составляет больше полови­ны от общей массы кислот, и лишь в немногих жирах ее содер­жится меньше 10%. Две другие непредельные кислоты — линолевая и линоленовая — также очень широко распростра­нены, хотя они присутствуют в значительно меньшем количестве, чем олеиновая кислота. В заметных количествах линолевая и линоленовая кислоты содержатся в растительных мас­лах; для животных организмов они являются незаменимыми кислотами.

Из предельных кислот пальмитиновая кислота почти так же широко распространена, как и олеиновая. Она присутству­ет во всех жирах, причем некоторые содержат ее 15—50% от общего содержания кислот. Широко распространены стеари­новая и миристиновая кислоты. Стеариновая кислота содер­жится в большом количестве (25% и более) только в запасных жирах некоторых млекопитающих (например, в овечьем жи­ре) и в жирах некоторых тропических растений, например в масле какао.

Целесообразно разделять кислоты, содержащиеся в жи­рах, на две категории: главные и второстепенные кислоты. Главными кислотами жира считаются кислоты, содержание которых в жире превышает 10%.

Физические свойства жиров

Как правило, жиры не выдерживают перегонки и разлага­ются, даже если их перегоняют при пониженном давлении.

Температура плавления, а соответственно и консистенция жиров зависят от строения кислот, входящих в их состав. Твердые жиры, т. е. жиры, плавящиеся при сравнительно вы­сокой температуре, состоят преимущественно из глицеридов предельных кислот (стеариновая, пальмитиновая), а в маслах, плавящихся при более низкой температуре и представляющих собой густые жидкости, содержатся значительные количества глицеридов непредельных кислот (олеиновая, линолевая, ли-ноленовая).

Так как природные жиры представляют собой сложные смеси смешанных глицеридов, они плавятся не при определен­ной температуре, а в определенном температурном интервале, причем предварительно они размягчаются. Для характеристи­ки жиров применяется, как правило, температура затверде­вания, которая не совпадает с температурой плавления — она несколько ниже. Некоторые природные жиры — твердые ве­щества; другие же — жидкости (масла). Температура затверде­вания изменяется в широких пределах: -27 °С у льняного мас­ла, -18 °С у подсолнечного, 19—24 °С у коровьего и 30—38 °С у говяжьего сала.

Температура затвердевания жира обусловлена характером составляющих его кислот: она тем выше, чем больше содержа­ние предельных кислот.

Жиры растворяются в эфире, полигалогенопроизводных, в сероуглероде, в ароматических углеводородах (бензоле, толу­оле) и в бензине. Твердые жиры трудно растворимы в петролейном эфире; нерастворимы в холодном спирте. Жиры нера­створимы в воде, однако они могут образовывать эмульсии, ко­торые стабилизируются в присутствии таких поверхностно-ак­тивных веществ (эмульгаторов), как белки, мыла и некоторые сульфокислоты, главным образом в слабощелочной среде. При­родной эмульсией жира, стабилизированной белками, являет­ся молоко.

Химические свойства жиров

Жиры вступают во все химические реакции, характерные для сложных эфиров, однако в их химиче­ском поведении имеется ряд особенностей, связанных со строением жирных кислот и глицерина.

Среди химических реакций с участием жиров выделяют несколько типов превращений.

studfile.net

Лекция 4. Химия липидов.

4. 1. Общая характеристика липидов.

Термином «липиды» (греч. lipos – жир) называют большую группу разнообразных по химическому строению соединений, которые растворимы в неполярных растворителях (эфире, хлороформе, бензоле) и относительно нерастворимы в воде. Они являются настоящими или потенциальными эфирами жирных кислот.

Они широко распространены в природе и являются важной составной частью пищи. Содержание липидов в организме человека составляет в среднем 10-20 % от массы тела. Содержание их в разных органах и тканях не одинаково, так в жировой ткани они составляют 90 %, в мозге 50 %. Липиды условно можно разделить на 2 вида: протоплазматические и резервные. Протоплазматические (конструкционные) входят в состав всех органов и тканей, составляют примерно 25 % всех липидов организма и практически остаются на одном уровне в течении всей жизни. Резервные липиды запасаются в организме, и их количество меняется в зависимости от различных факторов.

4. 2. Функции липидов в организме.

Липиды выполняют многообразные функции в организме человека:

  1. Структурная функция. В комплексе с белками составляют основу клеточных мембран, обеспечивают их жидкокристаллическое состояние и конформацию белков-рецепторов для гормонов.

  2. Энергетическая функция. Липиды на 25-30 % обеспечивают организм энергией и являются «метаболическим топливом»: окисление 1 г жира дает 38,9 кДж или 9,3 ккал энергии, что в 2 раза больше, чем белки или углеводы. Липиды могут откладываться про запас в клетках жировой ткани (подкожная клетчатка, брыжейка, околопочечная капсула) на длительное время (в отличии от гликогена – запаса углеводов на 24 часа) и служат запасной формой энергии и питательных веществ.

  3. Регуляторная функция. Входя в состав клеточных мембран, могут участвовать в регуляции деятельности гормонов, ферментов и биологического окисления. Некоторые представители липидов сами являются гормонами (например, кальцитриол, кортикостироиды) и витаминами (D3, F). Производные липидов – простогландины, участвуют в регуляции обменных процессов в клетке.

  4. Защитная функция. Липиды обеспечивают термоизоляцию, поэтому играют большую роль в терморегуляции, защищают органы от сотрясения, предохраняют кожу от высыхания.

  5. Влияют на активность мембранно-связанных ферментов, формируя их конформацию, образование активного центра.

  6. Участвуют в передаче нервного импульса.

  7. Являются растворителями для жирорастворимых витаминов A, D, E, К, что способствует их всасыванию.

  8. В виде липопротеидов, комплексов жирных кислот с альбуминами являются транспортной формой «метаболического топлива».

  9. Служат источником ненасыщенных жирных кислот – незаменимых факторов питания.

4. 3. Классификация липидов.

Классификация липидов основана на их способности к омылению. Омылением называется процесс образования солей жирных кислот путем щелочного гидролиза. Мыла – это натриевые (твердые) или калиевые (жидкие) соли жирных кислот. При гидролизе липидов образуются продукты различной природы, поэтому в классификации омыляемые жиры делятся по строению на простые и сложные.

Схема №2. Классификация липидов.

Липиды

Омыляемые Неомыляемые

Простые Сложные Высшие Высшие

спирты углеводы

- Нейтральные жиры - Фосфолипиды

- Воски - Гликолипиды

- Сульфолипиды

- Липопротеиды

studfile.net

5. Строение и функции липидов

Липи́ды — широкая группа органических соединений, включающая жирные кислоты, а также их производные, как по радикалу, так и по карбоксильной группе.

Молекулы простых липидов состоят из спирта, жирных кислот, сложные — из спирта, высокомолекулярных жирных кислот, возможны остатки фосфорной кислоты, углеводов, азотистых оснований и др.

Строение липидов зависит в первую очередь от пути их биосинтеза.

-Структурная функция. Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.

-Энергетическая. При окислении 1 г жиров высвобождается 38,9 кДж энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах обеспечивает энергией развитие зародыша и проростка, пока он не перейдет к самостоятельному питанию. Семена многих растений служат сырьем для получения масла промышленным способом.

-Защитная и теплоизоляционная. Накапливаясь в подкожной жировой клетчатке и вокруг некоторых органов (почки, кишечник), жировой слой защищает организм от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.

-Смазывающая и водоотталкивающая. Воска покрывают кожу, шерсть, перья, делают их более эластичными и предохраняют от влаги. Восковым налетом покрыты листья и плоды растений; воск используется пчелами в строительстве сот.

-Регуляторная. Многие гормоны являются производными холестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон).

-Метаболическая. Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

-Липиды являются источником метаболической воды. При окислении жира образуется примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно на эти цели.

6. Строение триглицеридов. Роль триглицеридов в метаболизме.

Жиры, или триглицериды — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. В живых организмах выполняют структурную, энергетическую и др. функции.

Наряду с углеводами и белками, жиры — один из главных компонентов питания. Жидкие жиры растительного происхождения обычно называют маслами — так же, как и сливочное масло.

Жиры, поставляя организму энергию, являются и ее аккумулятором, т. е. для того чтобы жиры освободили энергию, необходимо достаточное количество углеводов.

Жиры служат также для построения клеточных оболочек, принимают участие в образовании гормонов и витаминов, играют роль запасного питательного и защитного механического и теплоизоляционного материала, обеспечивают усвоение витаминов A, D, Е, К.

В крови человека имеются сложные (холестерин, липопротеиды и др.) и более простые жиры (кетоны, жирные кислоты, глицериды). Нарушение их равновесия имеет значение в развитии сахарного диабета, ожирения, сердечно-сосудистых заболеваний.

Наиболее необходимые жиры животного происхождения содержатся в молоке, сливочном масле, яичном желтке. В то же время ценные для обмена ненасыщенные жирные кислоты в большом количестве имеются и в растительных жирах (подсолнечное, кукурузное масло), которые также необходимы в питании человека (10—30 % всех жиров).

Избыточное потребление жира ведет к нарушению обмена веществ, ухудшению использования белка, нарушению пищеварения, повышению отложения жира в подкожной клетчатке и др.

studfile.net

Липиды ℹ️ состав и строение молекул, химические свойства и функции, классификация и виды, биологическая роль в организме человека и в клетке

Биологическая роль и функции

Молекулы липидов можно найти в любой живой клетке, без них невозможна жизнь. Они выполняют большинство функций как в масштабах всего организма, так и в отдельной клетке. Составлены из мономеров, включающих жирные кислоты и глицерин. Биологическая роль жиров в организме достаточно высока, т. к. без них невозможны многие жизненно важные процессы. Примером химической реакции может служить цепное окисление.

Основная функция липидов заключается в обновлении клеточных мембран. Окисляется обычно жировой слой оболочек клеток. Жиры тесно связаны с метаболизмом:

  1. Аденозинтрифосфорная кислота. Необходима для транспортировки питательных веществ, деления клеток, обеззараживания токсинов.
  2. Аминокислоты. Это структурная часть белков. При соединении с липидами они превращаются в липопротеины, которые осуществляют транспортировку полезных веществ в организме.
  3. Нуклеиновая кислота. Входит в структуру ДНК. При расщеплении липидов некоторая часть энергии идет на деление клеток, в результате которого появляются новые цепи ДНК.
  4. Стероиды. Гормоны с повышенным уровнем содержания этих соединений. При плохом усвоении они повышают риск развития заболеваний органов эндокринной системы.

В них происходит образование и усвоение веществ, которые требуются для поддержания жизнедеятельности клетки и ее деления. Липиды выполняют несколько функций:

  1. Энергетическая. Заключается в распаде липидов в организме с выделением большого объема энергии. Она требуется для поддержания и нормализации дыхания, деления клеток и их роста, а также других процессов. Липиды проникают в клетку с кровотоком и откладываются в виде жировых капель в ее цитоплазме. Клетка получает энергию при расщеплении молекул.
  2. Резервная. За накоплением жиров следят адипоциты — клетки, образующие жировую ткань в организме. Наибольший ее запас расположен в подкожно-жировой клетчатке. Она также выполняет теплоизоляцию организма, поддерживая нормальную температуру тела.
  3. Структурная. В клетке липиды, выполняя строительную функцию, входят в состав мембран, формируя и сохраняя стенки, и осуществляют обмен веществ.
  4. Транспортная. Эта функция относится к второстепенным. Ее осуществляют в основном липопротеины. Они состоят из белков и липидов, переносят с кровью вещества между органами.
  5. Ферментативная. Липиды участвуют в формировании ферментов, помогают усваивать некоторые микроэлементы, которые поступают с пищей.
  6. Сигнальная. Поддерживает несколько процессов организма. Заключается в переносе значимых сигналов внутрь клетки и из нее. Осуществляют это фосфатидилинозитол, эйкозаноиды, гликолипиды.
  7. Регуляторная. Липиды участвуют в регуляции многих процессов, но самостоятельно на их протекание не влияют. Это в основном стероидные гормоны (половые и надпочечников). Они участвуют в обмене веществ, репродуктивной функции, оказывают влияние на иммунитет.

Каждая из этих функций очень важна для поддержания нормальной жизнедеятельности людей и животных.

Строение и свойства

Строение липидов довольно простое. Они состоят из соединений жирных кислот и спиртов. Сложные вещества содержат:

  • фосфор;
  • азот;
  • серу.

В формулу жировой молекулы входят атомы углерода, кислорода, водорода.

Свойства липидов связаны с их химическим строением, зависят от насыщенности жирных кислот и спирта. Общими для всех видов жиров являются следующие:

  • растворимы в бензоле, хлороформе, гексане;
  • не растворимы в воде и полярных растворителях.

В организме людей перевариваются только эмульгированные жиры, основными эмульгаторами которых являются желчные кислоты и белки. Жиры присутствуют во всех живых клетках и создают барьер, ограничивающий их проницаемость, а также содержатся в составе гормонов.

Классификация соединений

Классификация липидов достаточно обширна, т. к. они выполняют много разных функций. Это видно из таблицы, где представлено их разделение по строению:

Типы Виды Описание
Простые Триацилглицерол, нейтральные жиры Принадлежат к сложным эфирам, состоящим из глицерина и жирных кислот. Различают моно-, ди- и триглицериды.
Воски   Сложные эфиры жирных кислот и спиртов (одноатомных или двухатомных).
Сложные Гликолипиды Состоят из углеводов и липидов, образующие гидрофильно-гидрофобные комплексы.
Фосфолипиды, глицерофосфолипиды, сфинголипиды   Омыляемые жиры. При их гидролизе образуется мыло, а строение зависит от пути биосинтеза.

Существуют и не взаимодействующие с водой (неомыляемые) липиды-стероиды. С учетом строения они подразделяются на:

  1. Стерины. К ним относят холестерин, эргостерин — спирты, присутствующие в составе животных и растительных клеток.
  2. Стероидные гормоны. Кортизол, тестостерон, кальцитриол — содействуют развитию и росту организма.
  3. Желчные кислоты. Это растворяющие холестерин производные холевой кислоты.

Отдельную группу составляют липопротеины. Состав их, с точки зрения биохимии, достаточно сложный. Они состоят из белков и жиров. В составе содержат холестерин, необходимый компонент клеточных мембран у высших организмов, фосфолипиды, жирные кислоты. Присутствующие в составе плазмы крови способны растворяться, а нерастворимые содержатся в оболочке нервного волокна.

Значение для человека

Некоторые виды соединений организм человека самостоятельно производить неспособен. Это ненасыщенные жирные кислоты. Они проникают с пищей и содержатся в:

  • орехах;
  • овощах;
  • зелени;
  • растительных маслах;
  • злаковых растениях;
  • фруктах.

Организму для получения жирорастворимых витаминов требуются триглицериды. Обогащены этими жирными кислотами большинство продуктов животного происхождения, это:

  • молоко;
  • мясо;
  • тропические фрукты (авокадо, кокосы).

По своей химической формуле к классу липидов относят и витамины А, Е, К, Д. Они поступают с пищей. Суточное потребление липидов взрослым человеком должно быть в пределах 80−130 граммов.

Влияние на кожный покров и волосы

Жиры необходимы для здоровья кожи, волосяного покрова. Секрецию, насыщенную жирами, выделяют сальные железы. При дефиците липидов нарушается регенерация клеток дермы, ногтей и волос:

  • кожный покров испытывает недостаток энергии для регенерации клеток;
  • дерма теряет эластичность и становится сухой при постоянной нехватке триглицеридов;
  • волосы утрачивают здоровый вид, теряют блеск, развиваются различные заболевания;
  • из-за слабой секреции сальных желез роговая прослойка дермы страдает от агрессивного воздействия внешней среды;
  • недостаточное содержание жиров ногтевые пластины делает мягкими.

Для восполнения дефицита рекомендуется придерживаться строгой диеты, пользоваться косметическими средствами, которые липиды содержат в своем составе.

В организме жиры играют резервную роль, используются при заболевании или ухудшении качества питания. Они структурный элемент тканей внутриклеточных образований и оболочек клеток. Пищевые имеют животное и растительное происхождение. Они не растворимы в воде, только в неполярных органических растворителях. Жиры, получаемые из растительных элементов, — это масла. Отдельную группу составляют жиры морских млекопитающих и рыб.


nauka.club


Смотрите также

     
     
Лекарственные растения для лечения заболеваний на букву А Лекарственные растения для лечения заболеваний на букву Б Лекарственные растения для лечения заболеваний на букву В
Лекарственные растения для лечения заболеваний на букву Г Лекарственные растения для лечения заболеваний на букву Д Лекарственные растения для лечения заболеваний на букву Е
Лекарственные растения для лечения заболеваний на букву Ж Лекарственные растения для лечения заболеваний на букву З Лекарственные растения для лечения заболеваний на букву И
Лекарственные растения для лечения заболеваний на букву К Лекарственные растения для лечения заболеваний на букву Л Лекарственные растения для лечения заболеваний на букву М
Лекарственные растения для лечения заболеваний на букву Н Лекарственные растения для лечения заболеваний на букву О Лекарственные растения для лечения заболеваний на букву П
Лекарственные растения для лечения заболеваний на букву Р Лекарственные растения для лечения заболеваний на букву С Лекарственные растения для лечения заболеваний на букву Т
Лекарственные растения для лечения заболеваний на букву У Лекарственные растения для лечения заболеваний на букву Ф
Лекарственные растения для лечения заболеваний на букву Ц Лекарственные растения для лечения заболеваний на букву Ч Лекарственные растения для лечения заболеваний на букву Ш
Лекарственные растения для лечения заболеваний на букву Э Лекарственные растения для лечения заболеваний на букву Ю Лекарственные растения для лечения заболеваний на букву Я
 
Карта сайта, XML.