ГлавнаяСбор Сушка   Поиск
     
     
Лекарственные растения на букву А Лекарственные растения на букву Б Лекарственные растения на букву В
Лекарственные растения на букву Г Лекарственные растения на букву Д Лекарственные растения на букву Е
Лекарственные растения на букву Ж Лекарственные растения на букву З Лекарственные растения на букву И
Лекарственные растения на букву К Лекарственные растения на букву Л Лекарственные растения на букву М
Лекарственные растения на букву Н Лекарственные растения на букву О Лекарственные растения на букву П
Лекарственные растения на букву Р Лекарственные растения на букву С Лекарственные растения на букву Т
Лекарственные растения на букву У Лекарственные растения на букву Ф Лекарственные растения на букву Х
Лекарственные растения на букву Ц Лекарственные растения на букву Ч Лекарственные растения на букву Ш
Лекарственные растения на букву Щ Лекарственные растения на букву Э Лекарственные растения на букву Ю,Я
 

Строение и функции плазматической мембраны обусловлены входящими в ее


Урок биологии в 10-м классе "Строение и функции органоидов клетки. Плазматическая мембрана"

Статья является конспектом урока-изучения и первичного закрепления новых знаний (курс “Общая биология”, 10 класс, по программе В.Б. Захарова).

Задачи:

  1. формирование знаний о строении, свойствах и функциях внутреннего слоя клеточной оболочки – плазматической мембраны (а на ее примере и других мембран клетки), с использованием мыльного пузыря в качестве модели.
  2. развитие понятия о соответствии строения выполняемым функциям.
  3. первичное закрепление полученных знаний с помощью заданий в формате ЕГЭ.

Оборудование:

  1. таблица “Строение растительной и животной клеток по данным светового и электронного микроскопов”.
  2. раствор моющего средства (для получения мыльных пузырей), пластмассовая трубочка, тонкая швейная игла.
  3. рисунок на доске: модели молекул <Рисунок 1>.
  4. дидактические материалы с заданиями в формате ЕГЭ.

Ход урока

Учитель: На прошлом уроке мы провели лабораторную работу “Плазмолиз и деплазмолиз в клетках кожицы лука”, при проведении которой познакомились с интересными явлениями. В чем их суть?

Ученики: При помещении растительной ткани (эпидермис чешуйки лука) в гипертонический раствор поваренной соли (NaCl) не происходило диффузии этого раствора в клетки, а наблюдался выход воды из вакуолей клеток в сторону гипертонического раствора NaCl, чтобы уравновесить концентрации ионов по обе стороны клеточной оболочки. При этом объем вакуолей и всей цитоплазмы в целом уменьшался, что вело к отхождению цитоплазмы от клеточной стенки – плазмолизу. При возвращении исследуемой ткани в чистую воду мы также не наблюдали выхода растворенных веществ из вакуолей, а только поступление воды из окружающего пространства внутрь клетки, в вакуоли с клеточным соком, что вело к восстановлению объема клетки до прежних границ – деплазмолизу.

Учитель: Какой вывод можно сделать из проведенного опыта?

Ученики: Вероятно, поверхность клетки свободно пропускает воду в обоих направлениях, но задерживает ионы Na+ и Cl-, входящие в состав поваренной соли.

Учитель: Свойство, которое мы обнаружили, называется избирательной проницаемостью или полупроницаемостью плазматической мембраны.

Что такое плазматическая мембрана (или плазмалемма), каково ее строение, свойства и функции мы и должны разобраться на сегодняшнем уроке. Как мы и договорились, вести урок будут ваши товарищи, которые подготовили лекцию о клеточных мембранах. Ваша задача – в процессе прослушивания записать основные сведения о клеточных мембранах. Полученные знания вы должны будете применить, отвечая на вопроса теста в конце урока.

Лектор 1. Строение мембран.

Плазматическая мембрана есть во всех клетках (под гликокаликсом – у животных и под клеточной стенкой у других организмов), она обеспечивает взаимодействие клетки с окружающей ее средой. Плазмалемма образует подвижную поверхность клетки, которая может иметь выросты и впячивания, совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы.

Несмотря на эти непрерывные изменения, клетка всегда остается охваченной плотно прилегающей мембраной. Плазматическая мембрана представляет собой тонкую пленку толщиной менее 10 нм. Даже при увеличении ее толщины в 1 млн. раз мы получим величину всего около 1 см, при этом, если всю клетку увеличить в 1 млн. раз, ее размер будет сравним с достаточно большой аудиторией.

Мембрана включает два основных типа молекул: фосфолипиды, образующие бислой в толще мембраны, и белки на ее поверхностях. Эти молекулы удерживаются вместе с помощью нековалентных взаимодействий. Такая модель мембраны, похожая на сэндвич, была предложена американскими учеными Даниели и Давсоном в 1935 году. С появлением электронного микроскопа она была подтверждена и несколько видоизменена. В настоящее время принята жидкостно-мозаичная модель мембраны, согласно которой белковые молекулы, плавающие в жидком липидном бислое, образуют в нем своеобразную мозаику. Схема этой современной модели, предложенной в 1972 году Сингером и Николсоном, дана в учебнике.

К некоторым белкам на наружной поверхности ковалентно прикреплены углеводы, образуя гликопротеины – своеобразные молекулярные антенны, являющиеся рецепторами. Гликопротеины участвуют в распознавании внешних сигналов, поступающих из окружающей среды или из других частей самого организма, и в реакции клеток на их воздействие. Такое взаимное узнавание – необходимый этап, предшествующий оплодотворению, а также сцеплению клеток в процессе дифференцирования тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунный ответ, в котором гликопротеины играют роль антигенов.

Лектор 2. Свойства мембран.

Чтобы понять, какими свойствами обладают эти микроскопические структуры, возьмем в качестве модели мыльный пузырь. Дело в том, что молекулы мыла и фосфолипидов, входящих в состав мембран, имеют аналогичное строение <Рисунок 1>. Мыла (соли жирных кислот) в своем строении имеют гидрофильную головку (из заряженной карбоксильной группы) и длинный гидрофобный хвост. У фосфолипидов, входящих в состав мембран, тоже имеется гидрофобная хвостовая часть (из двух цепей жирных кислот) и большая гидрофильная головка, содержащая отрицательно заряженную группу фосфорной кислоты.

Рис. 1. Модели молекул.

Когда вещества подобного строения смешиваются с водой, их молекулы самопроизвольно принимают такую конфигурацию: гидрофильные головки погружаются в воду, а гидрофобные хвосты в контакт с водой не вступают, контактируя только между собой и с другими гидрофобными веществами, которые могут быть вокруг, например, с воздухом. Оказываясь на границе между двумя средами аналогичной природы, и молекулы мыла, и молекулы фосфолипидов способны к образованию бислоя. Некоторые важные свойства биологических мембран (как и мыльных пузырей), перечисленные далее, объясняются структурой липидного бислоя.

а) Подвижность.

Липидный бислой по существу – жидкое образование, в пределах плоскости которого молекулы могут свободно передвигаться – “течь” без потери контактов в силу взаимного притяжения (“лектор” демонстрирует перетекание жидкости в стенке мыльного пузыря, висящего на пластмассовой трубочке). Гидрофобные хвосты могут свободно скользить друг относительно друга.

б) Способность самозамыкаться.

“Лектор” демонстрирует, как при протыкании мыльного пузыря и последующего извлечения иглы целостность его стенки сразу же восстанавливается. Благодаря этой способности клетки могут сливаться путем слияния их плазматических мембран (например, при развитии мышечной ткани). Этот же эффект наблюдается при разрезании клетки на две части микроножом, после чего каждая часть оказывается окруженной замкнутой плазматической мембраной.

в) Избирательная проницаемость.

То есть, непроницаемость для молекул, растворимых в воде, из-за маслянистой пленки, образованной гидрофобными хвостами фосфолипидных молекул. Чтобы физически проникнуть сквозь такую пленку, вещество само должно быть гидрофобным, или оно может протиснуться через случайные щели, образовавшиеся в результате молекулярных перемещений (мелкие молекулы, например, молекулы воды).

Белки, пронизывающие всю толщу мембраны, или располагающиеся на внешней и внутренней ее поверхностях, помогают клетке обмениваться веществами с окружающей средой. Белковые молекулы обеспечивают избирательный транспорт веществ через мембрану, являясь ферментами, кроме того, внутри белковых молекул или между соседними молекулами образуются поры, через которые в клетки пассивно поступают вода и некоторые ионы.

Лектор 3. Функции плазматической мембраны.

Для чего же служит клетке структура с таким строением и свойствами? Оказывается, что она:

  1. Придает клетке форму и защищает от физических и химических повреждений.
  2. Благодаря подвижности, способности образовывать выросты и выпячивания, осуществляет контакт и взаимодействие клеток в тканях и органах.
  3. Отделяет клеточную среду от внешней среды и поддерживает их различия.
  4. Является своеобразным указателем типа клеток в силу того, что белки и углеводы на поверхности мембран и различных клеток неодинаковы.
  5. Регулирует обмен между клеткой и средой, избирательно обеспечивая транспорт в клетку питательных веществ и выведение наружу конечных продуктов обмена.

Лектор 4. Я хочу рассказать, как происходит транспорт через плазматическую мембрану, а аналогично и через другие мембраны клетки. Транспорт бывает пассивный, не требующий затрат энергии, и активный, энергозависимый, в процессе которого расходуется энергия, получаемая вследствие гидролиза молекул АТФ.

1. Диффузия.

Это пассивный процесс; перемещение веществ осуществляется из области с высокой концентрацией в область с низкой концентрацией. Газы и липофильные (жирорастворимые) молекулы диффундируют быстро, ионы и малые полярные молекулы (глюкоза, аминокислоты, жирные кислоты) – медленно. Диффузию ускоряют поры в белковых молекулах.

Разновидностью диффузии является осмос – перемещение воды через мембрану.

2. Эндоцитоз.

Это активный транспорт веществ через мембрану в клетку (экзоцитоз – из клетки). В зависимости от характера переносимого через мембрану вещества различают два типа этих процессов: если переносится плотное вещество – фагоцитоз (от греч. “фагос” – пожирать и “цитос” – клетка), если же капли жидкости, содержащие разнообразные вещества в растворенном или взвешенном состоянии, то – пиноцитоз (от греч. “пино” – пить и “цитос” – клетка).

Принцип переноса в обоих случаях идентичен: в том месте, где поверхность клетки соприкасается с частицей или каплей вещества, мембрана прогибается, образует углубление и окружает частицу или каплю жидкости, которая в “мембранной упаковке” погружается внутрь клетки. Здесь образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества. Фагоцитоз широко распространен у животных, а пиноцитоз осуществляется клетками животных, растений, грибов, бактерий и сине-зеленых водорослей.

3. Активный транспорт при использовании ферментов, встроенных в мембрану.

Перенос идет против градиента концентрации с затратами энергии, например, в клетку поступают (“накачиваются”) ионы калия, а из клетки выводятся (“выкачиваются”) ионы натрия. Эта работа сопровождается накоплением на мембране разности электрических потенциалов. Такие клеточные транспортные системы принято называть “насосами”. Аналогично осуществляется транспорт аминокислот и сахаров.

Далее “лекторы” помогают слушателям сформулировать выводы по теме урока.

Выводы:

  1. Плазмалемма – тонкая, около 10 нм толщиной, пленка на поверхности клетки. Она включает липопротеиновые структуры (липиды и белки).
  2. К некоторым поверхностным молекулам белков присоединены углеводные молекулы (они связаны с механизмом распознавания).
  3. Липиды мембраны самопроизвольно образуют бислой. Этим обусловливается избирательная проницаемость мембраны.
  4. Мембранные белки выполняют разнообразные функции, существенно облегчают транспорт через мембрану.
  5. Мембранные липиды и белки способны перемещаться в плоскости мембраны, благодаря чему поверхность клетки не бывает идеально гладкой.

Для закрепления информации, полученной на уроке, ученикам предлагаются задания в формате ЕГЭ.

Часть “А”

Выберите один правильный ответ.

А1. Строение и функции плазматической мембраны обусловлены входящими в ее состав молекулами:

1) гликогена и крахмала
2) ДНК и АТФ
3) белков и липидов
4) клетчатки и глюкозы

А2. Плазматическая мембрана не выполняет функцию:

1) транспорта веществ
2) защиты клетки
3) взаимодействие с другими клетками
4) синтеза белка

А3. Углеводы, входящие в структуру клеточной мембраны, выполняют функцию:

1) транспорта веществ
2) рецепторную
3) образования двойного слоя мембраны
4) фотосинтеза

А4. Белки, входящие в структуру клеточной мембраны выполняют функцию:

1) строительную
2) защитную
3) транспортную
4) все указанные функции

А5. Фагоцитоз – это:

1) поглощение клеткой жидкости
2) захват твердых частиц
3) транспорт веществ через мембрану
4) ускорение биохимических реакций

А6. Гидрофильные поверхности мембран образованы:

1) неполярными хвостами липидов
2) полярными головками липидов
3) белками
4) углеводами

А7. Прохождение через мембрану ионов Na+ и K+ происходит путем:

1) диффузии
2) осмоса
3) активного переноса
4) не осуществляетс

urok.1sept.ru

Полугодовая контрольная работа по биологии 2014- 2015 учебный год 10 класс ЕМН

Полугодовая контрольная работа 2014- 2015 учебный год 10 класс ЕМН

Вариант 1.

А). Выберите один ответ, который является наиболее правильным

  1. К полимерам относятся:

А) фруктозу В) РНК С) воду Д) белки Е) минеральные соли

2. Назовите дисахарид:

А) сахароза В) хитин С) глюкоза Д) крахмал Е) гликоген

3. Сколько нитей входит в состав одной молекулы ДНК?

А) 5 В) 2 С) 3 Д) 4 Е) 1

4. Каталитическую функцию в организме выполняют

А) витамины В) нуклеиновые кислоты С) белки Д) углеводы Е) жиры

5. Принцип комплементарности лежит в основе взаимодействия

А) аминокислоты и образование первичной структуры белка

В) нуклеотидов и образования двуцепочечной молекулы ДНК

С) глюкоза и образования молекулы полисахарида клетчатки

Д) глицерина и жирных кислот и образования молекулы жира

Е) нуклеотидов и образования первичной структуры белка

6. Клетка – наименьшая единица живого, единица строения, жизнедеятельности и развития организмов – это положение теории

А) эволюции В) онтогенеза С) клеточной Д) хромосомной Е) филогенеза

7. Молекула АТФ образуется в процессе

А) гликолиза В) фотосинтеза С) хемосинтеза Д) биосинтеза Е) метаболизма

8. Органоиды, в которых происходит процесс дыхания:

А) рибосома В) лизосома С) митохондрии Д) комплекс Гольджи Е) хлоропласт

9. Процесс переписывания информации с ДНК на и-РНК называется

А) гликолиз В) фотосинтез С) хемосинтез Д) трансляция Е) транскрипция

10. Назовите один из органоидов, внутри которых имеется ДНК, благодаря чему они способны размножаться

А) рибосома В) лизосома С) митохондрии Д) комплекс Гольджи Е) клеточный центр

11. Количество молекул АТФ, синтезируемых в кислородную стадию энергетического обмена, составляет:

А) 36 В) 6 С) 2 Д) 18 Е) 38

12. Содержит нуклеоплазму:

А) ЭПС B) ядро C) органоид движения D) митохондрия E) лизосома

13. Какой органоид, в полостях которого накапливаются белки, жиры и углеводы, использующиеся затем клеткой или выводящиеся из нее, изображен на рисунке?

А) митохондрия В) хлоропласт С) аппарат Гольджи Д) лизосома Е) ядро

14. В состав ядра входят следующие компоненты:

А) ядерный сок B) эндоплазматическая сеть С) рибосомы D) митохондрии E) клеточный центр

15. Главным поставщиком энергии для синтеза АТФ в клетках является:

А) минеральные соли В) ферменты С) аминокислоты Д) витамины Е) глюкоза

В). Выбери три правильных ответа из шести предложенных:

16. Сходство клеток животных и бактерий состоит в том, что они имеют

А) оформленное ядро С) митохондрии Е) плазматическую мембрану

В) цитоплазму Д) гликокаликс F) рибосомы

17. Молекула и-РНК

А) полимер, мономерами, которого являются нуклеотиды

В) это полимер, мономерами которого являются аминокислоты

С) несет в себе закодированную информацию о последовательности аминокислот в белках

Д) двуцепочный полимер

Е) одноцепочный полимер

F) выполняет энергетическую функцию в клетке

18. Что включает молекула АТФ?

А) три остатка фосфорной кислоты В) дезоксирибозу С) аденин Д) рибозу Е) цитозин F) аминокислоту

19. Установите соответствие между чертами строения и функцией и органоидом, для которого они характерны.

СТРОЕНИЕ И ФУНКЦИИ ОРГАНОИДЫ

  1. Расщепляют органические вещества до мономеров А) Лизосомы

  2. Образуется 38 молекул АТФ Б) Митохондрии

  3. Имеют две мембраны

  4. Имеют одну мембрану

  5. Содержат кристы

  6. Содержат ДНК

20. Установите соответствие между признаком нуклеиновой кислоты и ее видом.

ХАРАКТЕРИСТИКА

ВИД

1) имеет форму листа клевера

А) ДНК

2) состоит из двух спирально закрученных цепей

Б) тРНК

3) доставляет аминокислоты к рибосомам

4) является хранителем наследственной информации

5) в длину достигает нескольких сотен тысяч нанометров

6) имеет небольшие размеры из нуклеиновых кислот

Полугодовая контрольная работа 2014- 2015 учебный год 10 класс ЕМН

Вариант 2.

А). Выберите один ответ, который является наиболее правильным

1. Назовите химическое соединение, которое имеется в РНК, но отсутствует в ДНК?

А) рибоза В) дезоксирибоза С) фосфорная кислота Д) гуанин Е) цитозин

2. Укажите группу химических элементов, содержание которых в клетке составляет в сумме 98%, -

А) H, O, N, P В) H, O, S, P С) H, C, O, N Д) C, H, K, Fe Е) Н, С, К, Р

3. Как называется процесс потери белком четвертичной и третичной структур, ведущий к утрате им биологической активности?

А) денатурация В) редупликация С) метаболизм Д) ренатурация Е) диссимиляция

4. Какое азотистое основание ДНК комплементарно цитозину?

А) аденин В) гуанин С) урацил Д) тимин Е) пепсин

5. К липидам относится:

А) холестерин В) хитин С) инсулин Д) крахмал Е) трипсин

6. Функцию переноса углекислого газа и кислорода в организме человека и многих животных выполняет

А) хлорофилл В) фермент С) ДНК Д) гемоглобин Е) гормон

7. Какую функцию в клетке выполняют липиды?

А) транспортную В) каталитическую С) защитную Д) двигательную Е) энергетическую

8. Назовите органоид клетки, который представляет собой систему плоских наложенных друг на друга мешочков, стенка которых образована одной мембраной; от мешочков отпочковываются пузырьки.

А) митохондрии В) аппарат Гольджи С) клеточный центр Д) ядро Е) хлоропласты

9. Грибы, клетки которых, как и клетки растений и животных, имеют оболочку, ядро, цитоплазму с органоидами, относят к группе организмов

А) автотрофов В) прокариот С) эукариот Д) содержащих нуклеотид Е) миксотрофов

10.Назовите структурный компонент клетки, в котором находится нуклеоплазма

А) митохондрии В) аппарат Гольджи С) клеточный центр Д) ядро Е) хлоропласты

11. Выберите органоид клетки, который имеет две мембраны - это

А) лизосома В) хлоропласт С) клеточный центр Д) эндоплазматическая сеть Е) аппарат Гольджи

12.К прокариотам относятся

А) бактериофаги В) простейшие С) растения Д) вирусы Е) цианобактерии

13. Какой буквой изображено ядерное вещество?

14. Строение и функции плазматической мембраны обусловлены входящими в ее состав молекулами

А) гликогена и крахмала В) ДНК и АТФ С) белков и липидов Д) клетчатки и глюкозы Е) РНК и АТФ

15. Количество молекул АТФ, синтезируемых в бескислородную и кислородную стадию энергетического

обмена, составляет:

А) 6 В) 2 C) 38 D) 36 E) 18

В). Выберите три правильных ответа из шести предложенных

16. Клетки бактерий отличаются от клеток животных

А) отсутствием оформленного ядра Д) наличием плазматической мембраны

В) наличием плотной оболочки Е) отсутствием митохондрий

С) наличием рибосом F) отсутствием комплекса Гольджи

17. Укажите структуры клетки эукариот, в которых локализованы молекулы ДНК.

А) ЭПС В) ядро С) митохондрии Д) рибосомы Е) хлоропласты F) лизосомы

18. Молекула ДНК

А) полимер, мономером которого является нуклеотид Д) полимер, мономером которого является аминокислота

В) двуцепочный полимер Е) одноцепочный полимер С) регулярный полимер F) входит в состав хромосом

19. Установите соответствие между характеристикой органоида клетки и его видом.

ХАРАКТЕРИСТИКА ОРГАНОИДА ОРГАНОИД КЛЕТКИ

  1. Система канальцев, пронизывающих цитоплазму А) Комплекс Гольджи

  2. Система, уплощенных мембранных цистерн и пузырьков Б) Эндоплазматическая сеть

  3. Выведение из клетки различных секретов (ферментов, гормонов)

  4. На мембранах могут размещаться рибосомы

  5. Участвуют в образовании лизосом

  6. Транспортирует к органоидам клетки продукты биосинтеза

20. Установите соответствие между характеристикой органических веществ и их видами

СТРОЕНИЕ И ФУНКЦИИ ВЕЩЕСТВА

  1. Состоят из молекул глицерина и жирных кислот А) Липиды

  2. Состоят из аминокислот Б) Белки

  3. Являются плохим проводником тепла и холода

  4. Выполняют транспортную функцию

  5. Выполняют ферментативную функцию

  6. При расщеплении 1 г освобождается 38,9 кДж

Ответы:

вопроса

1 вариант

2 вариант

1

Д

А

2

А

С

3

В

А

4

С

В

5

В

А

6

С

Д

7

А

Е

8

С

В

9

Е

С

10

С

Д

11

А

В

12

В

Е

13

С

Б

14

А

С

15

Е

С

16

В, Е, F

А, Е, F

17

А, С, Е

В, С, Е

18

А, С, Д,

А, В, F

19

А – 1, 4

Б – 2, 3, 5, 6

А – 2, 3, 5

Б- 1, 4, 6

20

А – 2, 4, 5

Б – 1, 3, 6

А – 1, 3, 6

Б- 2, 4, 5

infourok.ru

Тема №14283 Ответы к тесту по биологии "Строение и функции клетки"

Тема №14283

1. «Клетка — наименьшая единица живого, единица строения, жизнедеятельности и 

развития организмов» —это положение теории

А)  эволюции   

В)  клеточной   +

Б)  онтогенеза   

Г)  хромосомной   

2. Плазматическая мембрана клетки не участвует в процессах

А)  осмоса   

В)  фагоцитоза   

Б)  пиноциоза   

Г)  синтеза молекул АТФ  +

3. Сходство химического состава, клеточное строение организмов являются доказательством1) единства и общности происхождения органического мира  +
2) многообразия растительного и животного мира  
3) эволюции органического мира  
4) постоянства живой природы  

4. Назовите структурный компонент клетки, который имеется и у прокариот и у эукариот.

А)  аппарат Гольджи  В)  митохондрия  Б)  эндоплазматическая сеть  Г)  наружная плазматическая мембрана  +

5.Какую функцию в клетке выполняет вода?А)  энергетическую   В)  каталитическую   Б)  транспортную  +Г)  защитную  

6. Согласно клеточной теории клетки всех организмов

1) сходны по химическому составу  +
2) одинаковы по выполняемым функциям  
3) имеют ядро и ядрышко  
4) имеют одинаковые органоиды  

7.Укажите структурный компонент животной клетки, который виден только в электронный микроскоп. А)  клеточный центр   В)  митохондрия   Б)  ядро   Г)  рибосома   +

8. Назовите органоид клетки, который представляет собой систему плоских наложенных друг на друга мешочков, стенка которых образована одной мембраной; от мешочков отпочковываются пузырьки.

А)  митохондрия   

В)  клеточный центр   

Б)  аппарат Гольджи   +

Г)  хлоропласты   

9. Назовите химические соединения, которые мозаично расположены в наружной 

плазматической мембране и обеспечивают выполнение мембраной транспортной, 
ферментативной и рецепторной функций.

А)  белки   +

В)  липиды   

Б)  полисахариды   

Г)  РНК   

10.В одном из участков ядра происходит интенсивный синтез рибосомных РНК. Назовите этот участок ядра.

1) ядерные поры    
2) хроматин     
3) ядрышко   +
4) пространство между внутренней и наружной мембранами ядра

11.Назовите структурный компонент клетки, единственной функцией, которого является синтез  полипептидной цепи из аминокислот.

А)  лизосома   

В)  комплекс Гольджи   

Б)  рибосома   +

Г)  эндоплазматическая сеть   

12. В митохондриях в отличие от рибосом осуществляется

А)  транспорт белка   

В)  энергетический обмен   +

Б)  синтез белка   

Г)  транскрипция иРНК   

13. Грибы, клетки которых, как и клетки растений и животных, имеют оболочку, ядро,  цитоплазму с органоидами, относят к группе организмов 

А)  эукариот   +

В)  автотрофов   

Б)  содержащих нуклеоид   

Г)  прокариот   

14. Какой органоид содержит  граны?

А)  митохондрия   

В)  микротрубочка   

Б)  хлоропласт   +

Г)  лизосома   

15. Назовите  один из органоидов, внутри которых имеется ДНК, благодаря чему эти органоиды способны размножаться.

А)  лизосома   

В)  митохондрия   +

Б)  рибосома   

Г)  аппарат Гольджи   

16. Какой органоид встречается только у растений и отсутствует у животных и грибов?

А)  митохондрия   

В)  микротрубочка   

Б)  хлоропласт   +

Г)  лизосома   

17. Назовите структурный компонент клетки, который имеет следующее строение: окружен двумя мембранами, внутренняя мембрана образует многочисленные выросты во внутреннюю полость этого структурного компонента, во внутренней полости 
находятся ДНК в виде кольца и мелкие рибосомы.

А)  ядро   

В)  комплекс Гольджи   

Б)  митохондрия   +

Г)  клеточный центр   

18. Назовите органоид, который участвует в синтезе белков, синтезирует углеводы и липиды, транспортирует их в разные участки клетки, формирует оболочку ядра и комплекс Гольджи.

А)  митохондрия   

В)  эндоплазматическая сеть   +

Б)  микротрубочка   

Г)  лизосомы   

19.Микроорганизмы и твердые частицы вещества обволакиваются выростами летки и попадают в нее будучи окруженными участками наружной плазматической мембраной. Назовите такой вид транспорта веществ через мембрану.

А)  диффузия   

В)  фагоцитоз   +

Б)  пиноцитоз   

Г)  осмос   

20.Какой органоид животной клетки расположен около ядра, а при митозе формирует полюса веретена деления и участвует в расхождении к ним хромосом?

А)  комплекс Гольджи   

В)  клеточный центр   +

Б)  микротрубочка   

Г)  рибосомы   

21. Какие в основном органические соединения вместе с ДНК входят в состав хроматина?

А)  холестерин   

В)  полисахариды   

Б)  фосфолипиды   

Г)  белки   +

22.Какие клетки человека в процессе развития теряют ядро, но в течение длительного времени продолжают выполнять свои функции?

1) нервные клетки     
2) клетки внутреннего слоя кожи    
3) эритроциты    +

4) поперечно-полосатые мышечные волокна    

23.Прежде чем оказаться в лизосоме, ферменты после своего образования проходят через два структурных компонента клетки. Назовите их в той последовательности, в которой ферменты проходят через них после синтеза на рибосомах.

А)  аппарат Гольджи и ЭПС   

В)  ЭПС и митохондрии   

Б)  ЭПС и аппарат Гольджи   +

Г)  митохондрии и ядро   

24. Какой структурный компонент клетки имеют и прокариоты, и эукариоты?

А)  ядро   

В)  рибосома   +

Б)  митохондрия   

Г)  лизосома   

25. Назовите органоид, в котором происходит образование сложных белков и крупных молекул полимеров, упаковка выделяемых из клетки веществ в мембранный пузырек, формирование лизосом.

А)  эндоплазматическая сеть   

В)  клеточный центр   

Б)  аппарат Гольджи   +

Г)  митохондрия   

26. Назовите структурный компонент клетки, в котором образуются рибосомные и транспортные РНК, участвующие в синтезе белков

А)  лизосома   

В)  рибосома   

Б)  эндоплазматическая сеть   

Г)  ядро   +

27. Назовите органоид, который придает гранулярной эндоплазматической сети 

«шероховатость».

А)  лизосома   

В)  ядрышко   

Б)  митохондрия   

Г)  рибосома   +

28. Какой органоид содержит кристы?

А)  митохондрия   +

В)  микротрубочка   

Б)  хлоропласт   

Г)  лизосома   

29. Внутри некоторых органоидов клетки имеется ДНК, благодаря чему эти органоиды способны размножаться. Назовите один из таких органоидов.

А)  аппарат Гольджи   

В)  эндоплазматическая сеть   

Б)  хлоропласт   +

Г)  лизосомы   

30. Строение и функции плазматической мембраны обусловлены входящими в ее состав молекулами

А)  гликогена и крахмала   

В)  белков и липидов   +

Б)  ДНК  и  АТФ   

Г)  клетчатки и глюкозы   

31. Некоторые структурные компоненты эукариотической клетки имеют две мембраны. 

Назовите один из таких компонентов.

А)  клеточный центр   

В)  аппарат Гольджи   

Б)  митохондрия   +

Г)  рибосома   

32. Один из органоидов клетки имеется у животных, но отсутствует у высших растений.

Назовите его.

А)  рибосома   

В)  хлоропласт   

Б)  аппарат Гольджи   

Г)  центриоль   +

33. В хромосомах эукариот ДНК связана с большим количеством молекул другого типа 

органических соединений, образуя с ними сложный комплекс – хроматин. Назовите 
эти химические соединения.

А)  белки   +

В)  полисахариды   

Б)  липиды   

Г)  аминокислоты   

34. Назовите структурный компонент животной клетки, который имеет следующее 

строение: две цилиндрические структуры, состоящие из микротрубочек, 
расположены перпендикулярно друг другу,  от них в разные стороны веером 
отходят микротрубочки. 

А)  митохондрия   

В)  клеточный центр   +

Б)  центриоль   

Г)  комплекс Гольджи   

35. Назовите органоид, который представляет собой образованный одной мембраной пузырек, внутри которого находится несколько десятков пищеварительных (гидролитических) ферментов.

А)  рибосома   

В)  полисома   

Б)  лизосома   +

Г)  центросома   

36. В ряде случаев молекулы растворенного вещества попадают в клетку, находясь в составе капли жидкости внутри пузырьков, которые образовались после впячивания и последующего отшнуровывания плазматической мембраны. Назовите этот вид 
транспорта веществ через наружную плазматическую мембрану.

А)  диффузия   

В)  фагоцитоз   

Б)  пиноцитоз   +

Г)  осмос   

Подготовка к ЕГЭ по биологии. 2. Клетка. С ответами   стр. 7 из 25

37. Назовите органоид, мембраны которого непосредственно переходят в мембраны ядерной оболочки.

А)  митохондрия   

В)  эндоплазматическая сеть   +

Б)  комплекс Гольджи   

Г)  наружная плазматическая мембрана   

38.Назовите клеточные структуры человека, каждая из которых содержит очень много ядер.

1) нервные клетки  
2) клетки кожи  
3) скелетные поперечно-полосатые мышечные волокна  +
4) половые клетки  

39.Хлоропласты имеются в клетках

А)  корня капусты   

В)  листа красного перца   +

Б)  гриба-трутовика   

Г)  древесины стебля липы   

40. Эукариотическая клетка в отличие от прокариотической содержит

А)  включения   

В)  цитозоль   

Б)  цитоплазматическую мембрану   

Г)  лизосомы   +

41. Клетки бактерий, как и клетки растений, содержат

1) цитоплазматическую мембрану и митохондрии   
2) цитоскелет и клеточную стенку   
3) рибосомы и ЭПС   
4) рибосомы и клеточную стенку   +

42. К прокариотным относят клетки

А)  животных   

В)  грибов   

Б)  цианобактерий   +   

Г)  растений   

43.Какую функцию выполняют в клетке лизосомы? 

1) расщепляют биополимеры до мономеров   +
2) окисляют глюкозу до углекислого газа и воды   
3) осуществляют синтез органических веществ   
4) синтезируют полисахариды из глюкозы   

44. Хлоропласты, в отличие от митохондрий, имеются в клетках

А)  грибов   

В)  водорослей   +

Б)  животных   

Г)  цианобактерий   

45.Эндоплазматическую сеть можно узнать в клетке по  

1) системе полостей с пузырьками на концах    
2) множеству расположенных в ней гран    

3) системе связанных между собой разветвленных канальцев    +
4) многочисленным кристам на внутренней мембране      

46. Ядро играет большую роль в клетке, так как оно участвует в синтезе

А)  глюкозы   

В)  липидов   

Б)  клетчатки   

Г)  нуклеиновых кислот   +

47. Ферменты лизосом формируются в 

А)  комплексе Гольджи   +

В)  пластидах   

Б)  клеточном центре   

Г)  митохондриях   

48. Аппарат Гольджи наиболее развит в клетках

А)  мышечной ткани   

В)  поджелудочной железы    +

Б)  плоского эпителия   

Г)  кроветворных органов   

49.Из приведенных  формулировок укажите положение клеточной теории.

1) Оплодотворение— это процесс слияния мужской и женской гамет.  
2) Онтогенез повторяет историю развития своего вида.  
3) Дочерние клетки образуются в результате деления материнской.  +
4) Половые клетки офазуются в процессе мейоза.  

50.Какая структура изображена на рисунке?

1) хромосома   +
2) эндоплазматическая сеть   
3) комплекс Гольджи   
4) микротрубочка   

51. Белки, используемые самой клеткой, синтезируются на

А)  шероховатой ЭПС   

В)  гладкой ЭПС   

Б)  полисомах, расположенных в цитозоле   +

Г)  комплексе Гольджи   

52.Короткие бактерии, изогнутые в виде запятых

А)  спириллы   

Б)  вибрионы   +

В)  вирионы   

Г)  бациллы   

53. Микрофиламенты (микронити) входят в состав

А)  центриолей   

В)  веретена деления   

Б)  жгутиков   

Г)  сократительных элементов мышечной ткани   +

54. Максимальный объем в растительной клетке занимает

А)  ядро   

Б)  комплекс Гольджи   

В)  вакуоль   +

Г)  лизосома   

55. К прокариотам относятся

А)  бактериофаги   

В)  цианобактерии    +

Б)  простейшие   

Г)  вирусы   

56. Ферменты лизосом разрушают белки до

А)  углекислого газа и воды   

В)  аминокислот   +

Б)  мочевины и углекислого газа   

Г)  нуклеотидов   

57. Ферменты лизосом синтезируются в

А)  рибосомах   +

В)  клеточной стенке   

Б)  митохондриях   

Г)  комплексе Гольджи   

58. В пользу гипотезы симбиотического происхождения митохондрий от аэробных прокариот свидетельствует

1) сходство митохондриальных и прокариотических рибосом   +
2) автономный синтез митохондриями всех собственных белков   
3) идентичность наружной митохондриальной мембраны с клеточной стенкой бактерий   

4) присутствие в митохондриях ДНК линейной формы   

59. В пользу гипотезы симбиотического происхождения хлоропластов от фотосинтезирующих прокариот свидетельствует

1) автономный синтез хлоропластами всех собственных белков   
2) ДНК кольцевой формы   +
3) способность хлоропластов фиксировать атмосферный азот   
4) идентичность клеточных стенок цианобактерий и хлоропластов   

xn----8sbhepth3ca.xn--p1ai

Проверочная работа по биологии Основы цитологии

Проверочная работа по биологии Основы цитологии — науки о клетке 9 класс с ответами. Проверочная работа включает 13 заданий с выбором ответа.

1. Наименьшей структурной и функциональной единицей живого, вне которой невозможно реализовать основные жизненные свойства, является

а) атом
б) молекула
в) клетка
г) биосфера

2. Укажите формулировку одного из положений клеточной теории

а) Клетки растений отличаются от клеток животных наличием хлоропластов
б) Клетка -единица строения, жизнедеятельности и развития организмов
в) Клетки прокариот не имеют оформленного ядра
г) Клетки эукариот обязательно имеют клеточную стенку

3. К обязательным структурным компонентам клетки нельзя отнести

а) плазматическую мембрану
б) цитоплазму
в) ядро
г) генетический аппарат

4. О сходстве клеток эукариот свидетельствует наличие в них

а) ядра
б) пластид
в) клеточной оболочки, состоящей из клетчатки
г) крупных вакуолей с клеточным соком

5. Строение и функции плазматической мембраны обусловлены входящими в её состав молекулами

а) гликогена и крахмала
б) ДНК и АТФ
в) белков и липидов
г) клетчатки и глюкозы

6. Молекулы АТФ выполняют в клетке функцию

а) защитную
б) каталитическую
в) аккумулятора энергии
г) транспорта веществ

7. Двойная спираль ДНК образуется за счёт связей между

а) аминокислотами
б) азотистыми основаниями и дезоксирибозой
в) остатком фосфорной кислоты и дезоксирибозой
г) комплементарными азотистыми основаниями

8. Ферментативную функцию в клетке выполняют

а) белки
б) липиды
в) углеводы
г) нуклеиновые кислоты

9. Богатое энергией вещество (АТФ) образуется

а) в рибосомах
б) в ядре
в) в межклеточном веществе
г) в митохондриях

10. Гомеостаз является проявлением жизненного свойства

а) раздражимости
в) саморегуляции
б) самовоспроизведения
г) изменчивости

11. Вашему вниманию предлагаются тестовые задания в виде суждений. Запишите номера верных суждений.

1) основу клеточной мембраны составляет слой липидов, обеспечивающий её избирательную проницаемость
2) единственная функция клеточной мембраны — поддержание постоянной формы клетки
3) цитоплазма обеспечивает взаимосвязь всех частей клетки
4) за передачу наследственной информации отвечает ядро клетки
5) гетеротрофное питание характерно только для животных клеток
6) диплоидный набор всегда включает только чётное количество хромосом
7) в гаметах содержится гаплоидный набор хромосом

12. Найдите соответствие между характеристикой и органоидом клетки, к которому она относится. Для этого к каждому элементу первого столбца подберите позицию из второго столбца. Напротив соответствующих букв проставьте нужные цифры.

Характеристика

А) содержат пигмент хлорофилл
Б) окружены наружной и внутренней мембранами
В) служит для транспорта веществ внутри клетки
Г) относятся к немембранным органоидам
Д) мелкие многочисленные органоиды принимают активное участие в синтезе белков
Е) служит для накопления, превращения и упаковки синтезированных веществ
Ж) служат для синтеза молекул АТФ
3) бывает гранулярной и гладкой
И) представляет собой сеть каналов, образованных мембранами и пронизывающих всю цитоплазму
К) относятся к мембранным органоидам
Л) содержат множество ферментов, необходимых для окисления органических веществ

Органоид

1) рибосомы
2) хлоропласты
3) митохондрии
4) лизосомы
5) эндоплазматическая сеть
6) аппарат Гольджи

13. Определите, для каких организмов, обозначенных буквами, характерны следующие утверждения. Для этого к каждому элементу первого столбца подберите позицию из второго столбца. Напротив соответствующих букв проставьте нужные цифры.

Утверждение

А) использует в качестве источника углерода углекислый газ воздуха
Б) для синтеза органических соединений использует энергию, заключённую в органических веществах
В) для пластического обмена используется углерод органических соединений
Г) главный источник энергии для синтеза веществ — солнечный свет
Д) является автотрофом
Е) присущ гетеротрофный тип питания

Организм

1) водоросль хлорелла
2) гриб мукор
3) одноклеточное животное инфузория

Ответы на проверочную работу по биологии Основы цитологии — науки о клетке 9 класс
1-в
2-б
3-в
4-а
5-в
6-в
7-г
8-а
9-г
10-в
11. 1367
12. А2 Б3 В5 Г1 Д1 Е5 Ж3 З4 И4 К6
13. А1 Б2 В2 Г13 Д13 Е2

testschool.ru

Клеточная мембрана — Википедия

У этого термина существуют и другие значения, см. Мембрана. Модель клеточной мембраны. Маленькие голубые и белые шарики — гидрофильные «головки» фосфолипидов, а присоединённые к ним линии — гидрофобные «хвосты». На рисунке показаны только интегральные мембранные белки (красные глобулы и жёлтые спирали). Жёлтые овальные точки внутри мембраны — молекулы холестерина. Жёлто-зелёные цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных, бактериальных и грибных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

В 1925 году Гортер и Грендель с помощью осмотического "удара" получили так называемые «тени» эритроцитов — их пустые оболочки. Тени сложили в стопку и определили площадь их поверхности. Затем с помощью ацетона выделили из оболочек липиды и определили количество липидов на единицу площади эритроцита — этого количества хватило на сплошной двойной слой. Хотя этот эксперимент привёл исследователей к правильному выводу, ими было допущено несколько грубых ошибок — во-первых, с помощью ацетона нельзя выделить абсолютно все липиды, а во-вторых, площадь поверхности была определена неправильно, по сухому весу. В данном случае минус на минус дал плюс, соотношение определяемых показателей случайно оказалось верным и был открыт липидный бислой.

Эксперименты с искусственными билипидными плёнками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. То есть в них содержится что-то, что снижает натяжение — белки. В 1935 году Даниэлли и Доусон представили научному сообществу модель «сендвича», которая говорит о том, что в основе мембраны лежит липидный бислой, по обеим сторонам от которого находятся сплошные слои белков, внутри бислоя ничего нет. Первые электронно-микроскопические исследования 1950-х годов подтвердили эту теорию — на микрофотографиях были видны 2 электронно-плотных слоя — белковые молекулы и головки липидов и один электронно-прозрачный слой между ними — хвосты липидов. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трёхслойное строение всех клеточных мембран.

Но постепенно накапливались аргументы против «бутербродной модели»:

  • накапливались сведения о глобулярности плазматической мембраны;
  • оказалось, что структура мембраны при электронной микроскопии зависит от способа её фиксации;
  • плазматическая мембрана может различаться по структуре даже в одной клетке, например в головке, шейке и хвосте сперматозоида;
  • «бутербродная» модель термодинамически не выгодна — для поддержания такой структуры нужно затрачивать большое количество энергии, и протащить вещество через мембрану очень сложно;
  • количество белков, связанных с мембраной электростатически, очень небольшое, в основном белки очень тяжело выделить из мембраны, так как они погружены в неё.

Всё это привело к созданию в 1972 году С. Д. Сингером (S. Jonathan Singer) и Г. Л. Николсоном (Garth L. Nicolson) жидкостно-мозаичной модели строения мембраны. Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Периферические белки действительно находятся на поверхности мембраны и связаны с полярными головками мембранных липидов электростатичесткими взаимодействиями, но никогда не образуют сплошной слой. Доказательствами жидкостности мембраны служат методы FRAP, FLIP и соматическая гибридизация клеток, мозаичности — метод замораживания-скалывания, при котором на сколе мембраны видны бугорки и ямки, так как белки не расщепляются, а целиком отходят в один из слоёв мембраны.

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой[1]. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки[1]. Транспорт через мембрану обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
  • Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • Осуществление генерации и проведения биопотенциалов.
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.

Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

  1. 1 2 Твердислов В. А., Яковенко Л. В. Физика биологических мембран // Школьникам о современной физике. Акустика. Теория относительности. Биофизика. - М., Просвещение, 1990. -ISBN 5-09-001323-3. - Тираж 200 000 экз. - С. 131-158
  • Антонов В. Ф., Смирнова Е. Н., Шевченко Е. В. Липидные мембраны при фазовых переходах. — М.: Наука, 1994.
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — М.: Мир, 1997. — ISBN 5-03-002419-0.
  • Иванов В. Г., Берестовский Т. Н. Липидный бислой биологических мембран. — М.: Наука, 1982.
  • Рубин А. Б. Биофизика, учебник в 2 тт. — 3-е издание, исправленное и дополненное. — М.: издательство Московского университета, 2004. — ISBN 5-211-06109-8.
  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1. — учебник по молекулярной биологии на английском языке

ru.wikipedia.org

2.1.2. Функции плазматической мембраны.

Плазматическая мембрана выполняет множество функций. Перечислим наиболее важные.

  • Перенос веществ через мембрану. Через мембрану осуществляется транспорт веществ в обе стороны мембраны.

  • Перенос информации через мембрану. На мембране информация из вне воспринимается преобразуется и передаётся в клетку или из клетки. Существенную роль при это м играют рецепторы мембран.

  • Защитная роль. а) защищает содержимое клетки от механических повреждений, химических реагентов и биологической агрессии, например от проникновения вирусов и др.;

б) в многоклеточном организме рецепторы плазматической мембраны формируют иммунный статус организма;

в) в многоклеточном организме мембрана обеспечивает протекание реакции фагоцитоза.

  • Ферментативная - в мембранах находятся различные ферменты (например, фосфолипаза А и др.), которые осуществляют целый ряд ферментативных реакций.

  • Гликопротеины и гликолипиды на цитоплазматической мембране осуществляют контакт с мембранами других клеток.

Некоторые из перечисленных функций рассмотрим более детально.

а. Транспортная функция.Через мембрану внутрь клетки и наружу происходит перемещение различных веществ, в том числе и лекарственных препаратов. В зависимости от размера переносимых через мембрану молекул различают два вида транспорта: без нарушения целостности мембраны и с нарушением целостности мембраны. Первый тип транспорта может осуществляется двумя путями – без затрата энергии (пассивный транспорт) и с затратой энергии (активный транспорт) (см. рис. 4). Пассивный перенос происходит за счёт диффузии по электрохимическому градиенту в результате броуновского движения атомов и молекул. Этот вид транспорта может осуществляться непосредственно через липидный слой, без какого-либо участия белков и углеводов или при помощи специальных белков – транслоказ. Через липидный слой в основном транспортируются молекулы веществ, которые растворимы в жирах, и малые незаряженные или слабозаряженные молекулы, такие каквода, кислород, углекислый газ, азот, мочевина, жирные кислоты, а также многие органические соединения (например, наркотики) хорошо растворимые в жирах. Транслоказы, могут переносить вещество через мембраны в сторону его меньшей концентрации, не затрачивая энергии, при помощи двух различных механизмов – через канал, который проходит внутри белка, или путём соединения выступающей из мембраны части белка с веществом, поворотом комплекса на 1800и отсоединением вещества от белка. Диффузия веществ через мембрану с участием белков важна тем, что она идётзначительно быстреепростой диффузии, через липидный слой без участия белков. Поэтому диффузия, в которой принимают участие транслоказы, называют облегчённой диффузией. По такому принципу в клетку транспортируются некоторые ионы (например, ион хлора) и полярные молекулы, а также глюкоза.

Для активного переноса веществ через мембрану характерны три свойства:

  1. Активный перенос осуществляется против градиента концентрации.

  2. Осуществляется белком переносчиком.

  3. Идёт с затратой энергии.

Энергия при активном переносе веществ необходима для того, чтобы перенести вещество против градиента его концентрации. Системы активного переноса часто называют мембранными насосами. Энергия в этих системах может быть получена из различных источников, чаще всего таким источником служит АТФ. Расщепление фосфатных связей в АТФ осуществляет интегральный белок-фермент АТФ-аза. Поэтому этот фермент и находится в мембране многих клеток в виде интегрального белка. Важно то, что этот фермент не только освобождает энергию из АТФ, но и осуществляет перемещение вещества. Поэтому система активного переноса состоит чаще всего из одного белка - АТФ-азы, который получает энергию и перемещает вещество. Иными словами, процесс перемещения и энергообеспечения в АТФ-азе сопряжены. В зависимости от того, какие вещества перекачивает АТФ-аза насосы называют или Na+, K+- АТФ-аза или Ca2+-АТФ-аза. Первые регулируют содержание в клетке натрия и калия, вторые кальция (этот тип насосов чаще всего размещён на каналах ЭПС). Сразу же отметим важный для медицинских работников факт: для успешной работы калий-натриевого насоса, клетка затрачиваетоколо 30%энергии основного обмена. Это очень большой объём. Эта энергия тратится на поддержку определённых концентраций натрия и калия в клетке и межклеточном пространстве;- в клетке содержится калия больше, чем в межклеточном пространстве, натрия, наоборот, больше в межклеточном пространстве, чем в клетке. Такое распределение, далёкое от осмотического равновесия, обеспечивает наиболее оптимальный режим работы клетки.

Транспорт веществ через мембраны

Пассивный

(без затраты энергии)

Активный

(с затратой энергии)

Простая диффузия

( без участия белков)

Источник энергии - АТФ

Облегчённая диффузия

(с участием белков)

Другие виды источников

Через канал в белке

Путём переворота

белка с веществом

на 1800

Рис. 4. Классификация типов транспорта веществ через мембрану.

Путём активного переноса происходит перемещение через мембрану неорганических ионов, аминокислот и сахаров, практически всех лекарственных веществ, имеющих полярные молекулы – парааминобензойная кислота, сульфаниламиды, йод, сердечные гликозиды, витамины группы В, кортикостероидные гормоны и др.

Для наглядной иллюстрации процесса переноса веществ через мембрану мы приводим (с небольшими изменениями) рисунок 5 взятый из книги «Молекулярная биология клетки» (1983) Б. Альбертса и др. учёных, считающихся лидерами в разработке теории

Транспортируемая молекула

Канальный Белок

белок переносчик

Липидный Электрохимич.

бислой градиент

Затрата

энергии

Простая диффузия Облегчённая диффузия

Пассивный транспорт Активный транспорт

Рис 5. Многие мелкие незаряженные молекулы свободно проходят через липидный бислой. Заряженные молекулы, крупные незаряженные молекулы и некоторые мелкие незаряженные молекулы проходят через мембраны по каналам или порам либо с помощью специфических белков переносчиков. Пассивный транспорт всегда направлен против электрохимического градиента в сторону установления равновесия. Активный же транспорт осуществляется против электрохимического градиента и требует энергетических затрат.

трансмембранного переноса, отражены основные типы переноса веществ через мембрану. Следует отметить что белки, участвующие в трансмембранном переносе, относятся к интегральным белкам и чаще всего представлены одним сложноорганизованным белком.

Перенос высокомолекулярных молекул белка и др. больших молекул через мембрану в клетку осуществляется эндоцитозом (пиноцитоз, фагоцитоз и эндоцитоз), а из клетки – экзоцитозом. Во всех случаях эти процессы отличаются от вышеизложенных тем, что переносимое вещество (частица, вода, микроорганизмы или др.) вначале упаковывается в мембрану и в таком виде переносится в клетку или выделяется из клетки. Процесс упаковки может происходить как на поверхности плазматической мембраны, так и внутри клетки

б. Перенос информации через плазматическую мембрану.

Кроме белков, участвующих в переносе веществ через мембрану, в ней выявлены сложные комплексы из нескольких белков. Пространственно разделённые, они объединены одной конечной функцией. К сложно устроенным белковым ансамблям относится комплекс белков, отвечающих за производство в клетке очень мощного биологически активного вещества – цАМФ (циклический аденозинмонофосфат). В этом ансамбле белков имеются как поверхностные, так и интегральные белки. Например, на внутренней поверхности мембраны расположен поверхностный белок, который носит название G– белок. Этот белок поддерживает взаимоотношения между двумя рядом расположенными интегральным белками – белком, который называется адреналиновый рецептор и белком - ферментом – аденилатциклазой. Адренорецептор способен соединятся с адреналином, который попадает из крови в межклеточное пространство и возбуждаться. Это возбуждениеG– белок передаёт на аденилатциклазу – фермент, способный производить активное вещество – цАМФ. Последний, поступает в цитоплазму клетки и активирует в ней самые различные ферменты. Например, активируется фермент, расщепляющий гликоген до глюкозы. Образование глюкозы приводит к повышению активности митохондрий и повышению синтеза АТФ, которая поступает в качестве носителя энергии во все клеточные отсеки, усиливая работу лизосомы, натрий-калиевых и кальциевых насосов мембраны, рибосом и т.д. повышая в конечном итоге жизнедеятельность практически всех органов, особенно мышц. На этом примере, хотя и очень упрощенном, видно как связана деятельность мембраны с работой других элементов клетки. На бытовом уровне эта сложная схема выглядит достаточно просто. Представьте, что на человека неожиданно набросилась собака. Возникшее чувство страха приводит к выбросу в кровь адреналина. Последний, связывается с адренорецепторами на плазматической мембране изменяя при этом химическую структуру рецептора. Это, в свою очередь, приводит к изменению структурыG– белка. ИзменённыйG– белок становиться способным активировать аденилатциклазу, которая усиливает производство цАМФ. Последний стимулирует образование глюкозы из гликогена. В результате усиливается синтез энергоёмкой молекулы АТФ. Повышенное образование энергии у человека в мышцах приводит к быстрой и сильной реакции на нападение собаки (бегство, защита, борьба и т.д.).

studfile.net

основные сведения, строение и функции

Клеточная мембрана, которую также называют плазмалемма, цитолемма или же плазматическая мембрана — является молекулярной структурой, эластичной по своей природе, которая состоит из различных белков и липидов. Она отделяет содержание любой клетки от внешней среды, тем самым регулируя ее защитные свойства, а также обеспечивает обмен между внешней средой и непосредственно внутренним содержимым клетки.

Плазматическая мембрана

Плазмалемма — это перегородка, находящаяся внутри, непосредственно за оболочкой. Она делит клетку на определенные отсеки, которые направлены на компартменты или же органеллы. В них содержатся специализированные условия среды. Клеточная стенка полностью закрывает всю клеточную мембрану. Она выглядит как двойной слой молекул.

Основные сведения

Состав плазмалеммы — это фосфолипиды или же, как их еще называют, сложные липиды. Фосфолипиды имеют несколько частей: хвост и головку. Специалисты называют гидрофобные и гидрофильные части: в зависимости от строения животной или растительной клетки. Участки, которые именуются головкой — обращены внутрь клетки, а хвосты — наружу. Плазмалеммы по структуре являются инвариабельными и очень похожи у различных организмов; чаще всего исключение могут составить археи, у которых перегородки состоят из различных спиртов и глицерина.

Толщина плазмалеммы приблизительно 10 нм.

В малом содержании в состав биологической мембраны входят некоторые виды белков. Например, белки которые пронизывают всю мембрану насквозь, их называют интегральными. Мембраны, которые входят в состав и внешнего, и во внутреннего слоя (слой чаще всего бывает липидным), называются полуинтегральными.

Существуют перегородки, которые находятся на внешней стороне или же снаружи части, вплотную прилегающей к мембране — их называют поверхностными. Некоторые виды белка могут быть своеобразными контактными точками для клеточной мембраны и оболочки. Внутри клетки находится цитоскелет и наружная стенка. Определенные виды интегрального белка могут быть использованы как каналы в ионных транспортных рецепторах (параллельно с нервными окончаниями).

Если использовать электронный микроскоп, то можно получить данные, на основе которых можно построить схему строения всех частей клетки, а также основных составляющих и оболочек. Верхний аппарат будет состоять из трех субсистем:

  • комплексное надмембранное включение;
  • плазматическая мембрана;
  • опорно-сократительный аппарат цитоплазмы, который будет иметь субмембранную часть.

К данному аппарату можно отнести цитоскелет клетки. Цитоплазма с органоидами и ядром называется — ядерный аппарат. Цитоплазматическая или, по-другому, плазматическая клеточная мембрана, находится под клеточной оболочкой.

Слово «мембрана» произошло от латинского слова membrum, которое можно перевести как «кожа» или «оболочка». Термин предложили более 200 лет назад и им чаще называли края клетки, но в период, когда началось использование различного электронного оборудования, установили, что плазматические цитолеммы составляют множество различных элементов оболочки.

Элементы чаще всего структурные, такие как:

  • митохондрии;
  • лизосомы;
  • пластиды;
  • перегородки.

Одна из первых гипотез относительно молекулярного состава плазмалеммы была выдвинута в 1940 году научным институтом Великобритании. Уже в 1960 году Уильям Робертс предложил миру гипотезу «Об элементарной мембране». Она предполагала, что все плазмалеммы клетки состоят из определенных частей, по сути, являются сформированными по общему принципу для всех царств организмов.

В начале семидесятых годов XX века было открыто множество данных,  на основании которых в 1972 году ученые из Австралии предложили новую мозаично-жидкостную модель строения клеток.

Строение плазматической мембраны

Модель 1972-го года является общепризнанной и по сей день. То есть в современной науке, различные ученые, работающие с оболочкой, опираются на теоретический труд «Строение биологической мембраны жидкостно-мозаичной модели».

Молекулы белков связаны с липидным бислоем и пронизывают всю мембрану полностью — интегральные белки (одно из общепринятых названий — это трансмембранные белки).

Оболочка в составе имеет различные углеводные компоненты, которые будут выглядеть как полисахаридная или сахаридная цепь. Цепь, в свою очередь, будет соединена липидами и белком. Соединенные молекулами белка цепи называются гликопротеинами, а молекулами липидов — гликозидами. Углеводы находятся на внешней стороне мембраны и выполняют функции рецепторов в клетках животного происхождения.

Гликопротеин — представляют собой комплекс надмембранных функций. Его еще называют гликокаликс (от греческих слов глик и каликс, что в переводе означает "сладкий" и "чашка"). Комплекс способствует адгезии клеток.

Функции плазматической мембраны

Барьерная

Помогает отделить внутренние составляющие клеточной массы от тех веществ, которые находятся извне. Предохраняет организм от попадания различных веществ, которые будут являться для него чужеродными, и помогает поддерживать внутриклеточный баланс.

Транспортная

Клетка имеет свой «пассивный транспорт» и использует его для уменьшения расхода энергии. Транспортная функция работает в следующих процессах:

  • эндоцитоз;
  • экзоцитоз;
  • натриевый и калиевый обмен.

На внешней стороне мембраны находится рецептор, на участке которого происходит смешивание гормонов и различных регуляторных молекул.

Пассивный транспорт — процесс, при котором вещество проходит через мембрану, при этом энергия не затрачивается. Иными словами, вещество  доставляется из области клетки с высокой концентрацией, в ту сторону, где концентрация будет более низкая.

Существует два вида:

  • Простая диффузия — присуща маленьким нейтральным молекулам h3O, CO2 и О2 и некоторыми гидрофобным органическим веществам с низкой молекулярной массой и соответственно без проблем проходят через фосфолипиды мембраны. Эти молекулы могут проникать через мембрану вплоть до того времени, пока градиент концентрации будет стабилен и неизменен.
  • Облегченная диффузия — характерна для различных молекул гидрофильного типа. Они также могут проходить через мембрану согласно градиенту концентрации. Однако, процесс будет осуществляться с помощью различных белков, которые будут образовывать специфические каналы ионных соединений в мембране.

Активный транспорт — это перемещение различных составляющих через стенку мембраны в противовес градиенту. Такое перенесение требует значительных затрат энергетических ресурсов в клетке. Чаще всего именно активный транспорт является основным источником потребления энергии.

Выделяют несколько разновидностей активного транспорта при участии белков-переносчиков:

  • Натриево-калиевый насос. Получение клеткой необходимых минералов и микроэлементов.
  • Эндоцитоз — процесс, при котором происходит захват клеткой твердых частиц (фагоцитоз) или же различных капель любой жидкости (пиноцитоз).
  • Экзоцитоз — процесс, при котором происходит выделение из клетки определенных частиц во внешнюю окружающую среду. Процесс является противовесом эндоцитоза.

Термин "эндоцитоз" произошел от греческих слов "энда" (изнутри) и "кетоз" (чаша, вместилище). Процесс характеризует захват внешнего состава клеткой и осуществляется при производстве мембранных пузырьков. Этот термин был предложен в 1965 году профессором цитологии из Бельгии Кристианом Бэйлсом, он изучал поглощение различных веществ клетками млекопитающих, а также фагоцитоз и пиноцитоз.

Фагоцитоз

Происходит при захвате клеткой определенных твердых частиц или же живых клеток. А пиноцитоз — это процесс, при котором капли жидкости захватываются клеткой. Фагоцитоз (от греческих слов "пожиратель" и "вместилище") — процесс при котором очень маленькие объекты живой природы захватываются и поглощаются, так же как и твердые части различных одноклеточных организмов.

Открытие процесса принадлежит физиологу из России — Вячеславу Ивановичу Мечникову, который определил непосредственно процесс, при этом он проводил различные испытания с морскими звездами и крошечными дафниями.

В основе питания одноклеточных гетеротрофных организмов лежит их способность переваривать, а также захватывать различные частицы.

Мечников описал алгоритм поглощения бактерии амебой и общий принцип фагоцитоза:

  • адгезия — прилипание бактерий к мембране клетки;
  • поглощение;
  • образование пузырька с бактериальной клеткой;
  • откупоривание пузырька.

Исходя из этого, процесс фагоцитоза состоит из таких этапов:

  1. Поглощаемая частица крепится к мембране.
  2. Окружение поглощаемой частицы мембраной.
  3. Образование мембранного пузырька (фагосома).
  4. Открепление мембранного пузырька (фагосомы) во внутреннюю часть клетки.
  5. Объединение фагосомы и лизосомы (переваривание), а также внутреннее перемещение частиц.

Можно наблюдать полное или частичное переваривание.

В случае частичного переваривания чаще всего образуется остаточное тельце, которое будет находиться внутри клетки некоторое время. Те остатки, которые будут непереварены, изымаются (эвакуируются) из клетки путем экзоцитоза. В процессе эволюции эта функция предрасположенности к фагоцитозу постепенно отделилась и перешла от различных одноклеточных к специализированным клеткам (таким как пищеварительная у кишечнополостных и губок), а после к особым клеткам у млекопитающих и человека.

К фагоцитозу предрасположены лимфоциты и лейкоциты в крови. Сам процесс фагоцитоза нуждается в больших затратах энергии и напрямую объединен с активностью внешней клеточной мембраны и лизосомы, при которых находятся пищеварительные ферменты.

Пиноцитоз

Пиноцитоз — это захват поверхностью клетки какой-либо жидкости, в которой находятся различные вещества. Открытие явления пиноцитоза принадлежит ученому Фицджеральду Льюису. Произошло это событие в 1932 году.

Пиноцитоз — это один из основных механизмов, при котором в клетку попадают высокомолекулярные соединения, например, различные гликопротеины или же растворимые белки. Пиноцитозная активность, в свою очередь, невозможна без физиологического состояния клетки и зависит от ее состава и состава окружающей среды. Самый активный пиноцитоз мы можем наблюдать у амебы.

У человека пиноцитоз наблюдается в клетках кишечника, в сосудах, почечных канальцах, а также в растущих ооцитах. Для того чтобы изобразить процесс пиноцитоза, которой будет осуществляться с помощью лейкоцитов человека, можно сделать выпячивание плазматической мембраны. При этом части будут отшнуровываться и отделяться. Процесс пиноцитоза нуждается в затрате энергии.

Этапы процесса пиноцитоза:

  1. На наружной клеточной плазмалемме появляются тонкие наросты, которые окружают капли жидкости.
  2. Этот участок внешней оболочки становится тоньше.
  3. Образование мембранного пузырька.
  4. Стенка прорывается (проваливается).
  5. Пузырек перемещается в цитоплазме и может слиться с различными пузырьками и органоидами.

Экзоцитоз

Термин произошел от греческих слов "экзо" — наружный, внешний и "цитоз" — сосуд, чаша. Процесс заключается в выделении клеточной частью определенных частиц во внешнюю среду. Процесс экзоцитоза является противоположным пиноцитозу.

В процессе экоцитоза из клетки выходят пузырьки внутриклеточной жидкости и переходят на внешнюю мембрану клетки. Содержимое внутри пузырьков может выделяться наружу, а мембрана клетки сливается с оболочкой пузырьков. Таким образом, большинство макромолекулярных соединений будет происходить именно этим способом.

Экзоцитоз выполняет ряд задач:

  • доставка молекул на внешнюю клеточную мембрану;
  • транспортировка по всей клетке веществ, которые будут нужны для роста и увеличения площади мембраны, например, определенных белков или же фосфолипидов;
  • освобождение или соединение различных частей;
  • выведение вредных и токсических продуктов, которые появляются при метаболизме, например, соляной кислоты секретируемой клетками слизистой оболочки желудка;
  • транспортировка пепсиногена, а также сигнальных молекул, гормонов или нейромедиаторов.

Специфические функции биологических мембран:

  • генерация импульса, происходящего на нервном уровне, внутри мембраны нейрона;
  • синтез полипептидов, а также липидов и углеводов шероховатой и гладкой сети эндоплазматической сетки;
  • изменение световой энергии и ее преобразование в энергию химическую.

Видео

Из нашего видео вы узнаете много интересного и полезного о строении клетки.

liveposts.ru

Плазматическая мембрана: функции, строение :: SYL.ru

Клетка давно определена как структурная единица всего живого. И это действительно так. Ведь миллиарды этих структур, словно кирпичики, образуют растения и животных, бактерий и микроорганизмов, человека. Каждый орган, ткань, система организма - все выстроено из клеток.

Поэтому очень важно знать все тонкости ее внутреннего строения, химического состава и протекающих биохимических реакций. В данной статье рассмотрим, что представляет собой плазматическая мембрана, функции, которые она выполняет, и строение.

Органеллы клетки

Органеллами называются мельчайшие структурные части, находящие внутри клетки и обеспечивающие ее строение и жизнедеятельность. К ним относится множество разных представителей:

  1. Плазматическая мембрана.
  2. Ядро и ядрышки с хромосомным материалом.
  3. Цитоплазма с включениями.
  4. Лизосомы.
  5. Митохондрии.
  6. ЭПС (эндоплазматический ретикулум).
  7. Комплекс Гольджи.
  8. Рибосомы.
  9. Вакуоли и хлоропласты, если клетка растительная.

Каждая из перечисленных структур имеет свое сложное строение, сформирована ВМС (высокомолекулярными веществами), выполняет строго определенные функции и принимает участие в комплексе биохимических реакций, обеспечивающих жизнедеятельность всего организма в целом.

Общее строение мембраны

Строение плазматической мембраны изучалось еще с XVIII века. Именно тогда впервые была обнаружена ее способность выборочно пропускать или задерживать вещества. С развитием микроскопии исследование тонкой структуры и строения мембраны стало более возможным, и поэтому на сегодняшний день о ней известно практически все.

Синонимом ее основному названию является плазмалемма. Состав плазматической мембраны представлен тремя основными видами ВМС:

  • белки;
  • липиды;
  • углеводы.

Соотношение этих соединений и расположение может варьироваться у клеток разных организмов (растительной, животной или бактериальной).

Жидкостно-мозаичная модель строения

Многие ученые пытались высказывать предположения о том, каким образом располагаются липиды и белки в мембране. Однако только в 1972 г. учеными Сингером и Николсоном была предложена актуальная и сегодня модель, отражающая строение плазматической мембраны. Она названа жидкостно-мозаичной, и суть ее состоит в следующем: различные типы липидов располагаются в два слоя, ориентируясь гидрофобными концами молекул внутрь, а гидрофильными наружу. При этом вся структура, подобно мозаике, пронизана неодинаковыми типами белковых молекул, а также небольшим количеством гексоз (углеводов).

Вся предполагаемая система находится в постоянной динамике. Белки способны не просто пронизывать билипидный слой насквозь, но и ориентироваться у одной из его сторон, встраиваясь внутрь. Или вообще свободно "гулять" по мембране, меняя местоположение.

Доказательствами в защиту и оправданность этой теории служат данные микроскопического анализа. На черно-белых фотографиях явно видны слои мембраны, верхний и нижний одинаково темные, а средний более светлый. Также проводился ряд опытов, доказывающих, что слои основаны именно липидами и белками.

Белки плазматической мембраны

Если рассматривать процентное соотношение липидов и белков в мембране растительной клетки, то оно будет примерно одинаковое - 40/40%. В животной плазмалемме до 60% приходится на белки, в бактериальной - до 50%.

Плазматическая мембрана состоит из разных видов белков, и функции каждого из них также специфические.

1. Периферические молекулы. Это такие белки, которые ориентированы на поверхности внутренней или наружной частей бислоя липидов. Основные типы взаимодействий между структурой молекулы и слоем следующие:

  • водородные связи;
  • ионные взаимодействия или солевые мостики;
  • электростатическое притяжение.

Сами периферические белки - растворимые в воде соединения, поэтому их отделить от плазмалеммы без повреждений несложно. Какие вещества относятся к этим структурам? Самое распространенное и многочисленное - фибриллярный белок спектрин. Его в массе всех мембранных белков может быть до 75% у отдельных клеточных плазмалемм.

Зачем они нужны и как зависит от них плазматическая мембрана? Функции следующие:

  • формирование цитоскелета клетки;
  • поддержание постоянной формы;
  • ограничение излишней подвижности интегральных белков;
  • координация и осуществление транспорта ионов через плазмолемму;
  • могут соединяться с олигосахаридными цепями и участвовать в рецепторной передаче сигналов от мембраны и к ней.

2. Полуинтегральные белки. Такими молекулами называются те, что погружены в липидный бислой полностью или наполовину, на различную глубину. Примерами могут служить бактериородопсин, цитохромоксидаза и другие. Их называют также "заякоренными" белками, то есть будто прикрепленными внутри слоя. С чем они могут контактировать и за счет чего укореняются и удерживаются? Чаще всего благодаря специальным молекулам, которыми могут быть миристиновые или пальмитиновые кислоты, изопрены или стерины. Так, например, в плазмалемме животных встречаются полуинтегральные белки, связанные с холестерином. У растений и бактерий таких пока не обнаружено.

3. Интегральные белки. Одни из самых важных в плазмолемме. Представляют собой структуры, формирующие что-то вроде каналов, пронизывающих оба липидных слоя насквозь. Именно по этим путям осуществляются поступления многих молекул внутрь клетки, таких, которые липиды не пропускают. Поэтому основная роль интегральных структур - формирование ионных каналов для транспорта.

Существует два типа пронизывания липидного слоя:

  • монотопное - один раз;
  • политопное - в нескольких местах.

К разновидностям интегральных белков можно отнести такие, как гликофорин, протеолипиды, протеогликаны и другие. Все они нерастворимы в воде и тесно встроены в липидный слой, поэтому извлечь их без повреждения структуры плазмалеммы невозможно. По своему строению эти белки глобулярные, гидрофобный конец их расположен внутри липидного слоя, а гидрофильный - над ним, причем может возвышаться над всей структурой. За счет каких взаимодействий интегральные белки удерживаются внутри? В этом им помогают гидрофобные притяжения к радикалам жирных кислот.

Таким образом, существует целый ряд разных белковых молекул, которые включает в себя плазматическая мембрана. Строение и функции этих молекул можно объединить в несколько общих пунктов.

  1. Структурные периферические белки.
  2. Каталитические белки-ферменты (полуинтегральные и интегральные).
  3. Рецепторные (периферические, интегральные).
  4. Транспортные (интегральные).

Липиды плазмалеммы

Жидкий бислой липидов, которыми представлена плазматическая мембрана, может быть очень подвижным. Дело в том, что разные молекулы могут из верхнего слоя переходить в нижний и наоборот, то есть структура динамична. Такие переходы имеют свое название в науке - "флип-флоп". Образовалось оно от названия фермента, катализирующего процессы перестройки молекул внутри одного монослоя или из верхнего в нижний и обратно, флипазы.

Количество липидов, которое содержит клеточная плазматическая мембрана, примерно такое же, как число белков. Видовое разнообразие широко. Можно выделить такие основные группы:

  • фосфолипиды;
  • сфингофосполипиды;
  • гликолипиды;
  • холестерол.

К первой группе фосфолипидов относятся такие молекулы, как глицерофосфолипиды и сфингомиелины. Эти молекулы составляют основу бислоя мембраны. Гидрофобные концы соединений направлены внутрь слоя, гидрофильные - наружу. Примеры соединений:

  • фосфатидилхолин;
  • фосфатидилсерин;
  • кардиолипин;
  • фосфатидилинозитол;
  • сфингомиелин;
  • фосфатидилглицерин;
  • фосфатидилэтаноламин.

Для изучения данных молекул применяется способ разрушения слоя мембраны в некоторых частях фосфолипазой - специальным ферментом, катализирующим процесс распада фосфолипидов.

Функции перечисленных соединений следующие:

  1. Обеспечивают общую структуру и строение бислоя плазмалеммы.
  2. Соприкасаются с белками на поверхности и внутри слоя.
  3. Определяют агрегатное состояние, которое будет иметь плазматическая мембрана клетки при различных температурных условиях.
  4. Участвуют в ограниченной проницаемости плазмолеммы для разных молекул.
  5. Формируют разные типы взаимодействий клеточных мембран друг с другом (десмосома, щелевидное пространство, плотный контакт).

Сфингофосфолипиды и гликолипиды мембраны

Сфингомиелины или сфингофосфолипиды по своей химической природе - производные аминоспирта сфингозина. Наравне с фосфолипидами принимают участие в образовании билипидного слоя мембраны.

К гликолипидам относится гликокаликс - вещество, во многом определяющее свойства плазматической мембраны. Это желеподобное соединение, состоящее в основном из олигосахаридов. Гликокаликс занимает 10% от общей массы плазмалеммы. С этим веществом напрямую связана плазматическая мембрана, строение и функции, которые она выполняет. Так, например, гликокаликс осуществляет:

  • маркерную функцию мембраны;
  • рецепторную;
  • процессы пристеночного переваривания частиц внутри клетки.

Следует заметить, что наличие липида гликокаликса характерно только для животных клеток, но не для растительных, бактериальных и грибов.

Холестерол (стерин мембраны)

Является важной составной частью бислоя клетки у млекопитающих животных. В растительных не встречается, в бактериальных и грибах тоже. С химической точки зрения представляет собой спирт, циклический, одноатомный.

Равно как и остальные липиды, обладает свойствами амфифильности (наличие гидрофильного и гидрофобного конца молекулы). В мембране играет важную роль ограничителя и контролера текучести бислоя. Также участвует в выработке витамина D, является соучастником формирования половых гормонов.

В растительных же клетках присутствуют фитостеролы, которые не участвуют в образовании животных мембран. По некоторым данным известно, что эти вещества обеспечивают устойчивость растений к некоторым видам заболеваний.

Плазматическая мембрана образована холестеролом и другими липидами в общем взаимодействии, комплексе.

Углеводы мембраны

Данная группа веществ составляет примерно около 10% от общего состава соединений плазмалеммы. В простом виде моно-, ди-, полисахариды не встречаются, а только в форме гликопротеидов и гликолипидов.

Функции их заключаются в осуществлении контроля над внутри- и межклеточными взаимодействиями, поддержании определенной структуры и положения молекул белков в мембране, а также осуществлении рецепции.

Основные функции плазмалеммы

Очень велика роль, которую играет в клетке плазматическая мембрана. Функции ее многогранны и важны. Рассмотрим их подробнее.

  1. Отграничивает содержимое клетки от окружающей среды и защищает его от внешних воздействий. Благодаря наличию мембраны поддерживается на постоянном уровне химический состав цитоплазмы, ее содержимое.
  2. Плазмалемма содержит ряд белков, углеводов и липидов, которые придают и поддерживают определенную форму клетки.
  3. Мембрану имеет каждая клеточная органелла, которая называется мембранной везикулой (пузырьком).
  4. Компонентный состав плазмалеммы позволяет ей исполнять роль "стражника" клетки, осуществляя выборочный транспорт внутрь нее.
  5. Рецепторы, ферменты, биологически активные вещества функционируют в клетке и проникают в нее, сотрудничают с ее поверхностной оболочкой только благодаря белкам и липидам мембраны.
  6. Через плазмалемму осуществляется транспортировка не только соединений различной природы, но и ионов, важных для жизнедеятельности (натрий, калий, кальций и другие).
  7. Мембрана поддерживает осмотическое равновесие вне и внутри клетки.
  8. При помощи плазмалеммы осуществляется перенос ионов и соединений различной природы, электронов, гормонов из цитоплазмы в органеллы.
  9. Через нее же происходит поглощение солнечного света в виде квантов и пробуждение сигналов внутри клетки.
  10. Именно данной структурой осуществляется генерация импульсов действия и покоя.
  11. Механическая защита клетки и ее структур от небольших деформаций и физических воздействий.
  12. Адгезия клеток, то есть сцепление, и удержание их рядом друг с другом также осуществляется благодаря мембране.

Очень тесно взаимосвязана клеточная плазмалемма и цитоплазма. Плазматическая мембрана находится в тесном контакте со всеми веществами и молекулами, ионами, которые проникают внутрь клетки и свободно располагаются в вязкой внутренней среде. Данные соединения пытаются проникнуть внутрь всех клеточных структур, но барьером служит как раз мембрана, которая способна осуществлять разные типы транспорта через себя. Либо вообще не пропускать некоторые типы соединений.

Типы транспорта через клеточный барьер

Транспорт через плазматическую мембрану осуществляется несколькими способами, которые объединяет одна общая физическая особенность - закон диффузии веществ.

  1. Пассивный транспорт или диффузия и осмос. Подразумевает свободное перемещение ионов и растворителя через мембрану по градиенту из области с высокой концентрацией в область с низкой. Не требует расхода энергии, так как протекает сам по себе. Так происходит действие натрий-калиевого насоса, смена кислорода и углекислого газа при дыхании, выход глюкозы в кровь и так далее. Очень распространено такое явление, как облегченная диффузия. Данный процесс подразумевает наличие какого-либо вещества-помощника, которое цепляет нужное соединение и протаскивает за собой по белковому каналу или через липидный слой внутрь клетки.
  2. Активный транспорт подразумевает затраты энергии на процессы поглощения и выведения через мембрану. Есть два основных способа: экзоцитоз - выведение молекул и ионов наружу. Эндоцитоз - захватывание и проведение внутрь клетки твердых и жидких частиц. В свою очередь, второй способ активного транспорта включает в себя две разновидности процесса. Фагоцитоз, который заключается в заглатывании везикулой мембраны твердых молекул, веществ, соединений и ионов и проведение их внутрь клетки. При протекании данного процесса образуются крупные везикулы. Пиноцитоз, напротив, заключается в поглощении капелек жидкостей, растворителей и других веществ и проведении их внутрь клетки. Он подразумевает формирование пузырьков малых размеров.

Оба процесса - пиноцитоз и фагоцитоз - играют большую роль не только в осуществлении транспорта соединений и жидкостей, но и в защите клетки от обломков отмерших клеток, микроорганизмов и вредных соединений. Можно сказать, что эти способы активного транспорта также являются и вариантами иммунологической защиты клетки и ее структур от разных опасностей.

www.syl.ru

Строение и функции плазматической мембраны обусловлены входящими в её состав молекулами:

А. Гликогена и крахмала
Б. ДНК и АТФ
В. Белков и липидов
Г. Клетчатки и глюкозы

  • Следить
  • Отметить нарушение!

Ответы и объяснения

Алгебра

+ − × &bullet; ÷ ± = ≡ ≠ ~ ≈ &simeq; < ≤ ≤ > ≥ ∝ ∑ ∞ √ { } &langle; &rangle; ¼ ½ ¾ ƒ ′ ″ ∂ ∫ &Int; Δ &Del;

Геометрия

° ∠ &angmsd; &angrt; &vangrt; &lrtri; &cir; &xutri; &squ; &fltns; ◊ &spar; &npar; ⊥ ≅

Логика

¬ ∧ ∨ ∀ ∃ &EmptySmallSquare; ◊ &vdash; &vDash; ∴

Множества

∅ ∈ ∉ ⊆ &nsube; ⊂ ⊄ ⊇ &nsupe; ⊃ &nsup; ∩ ∪ &ssetmn; &ominus; ⊕ ⊗ &odot;

Верхние и нижние индексы

Нижние индексы

₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₀ ₊ ₋ ₍ ₎ ₐ ₓ

Верхние индексы

¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁰ ⁺ ⁻ ⁽ ⁾ ᵃ ᵇ ⁿ ˣ °

Греческий алфавит

Строчные

α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ω

Прописные

Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω

Стрелки

&uparrow; &downarrow; &updownarrow; → ← ↔ &Uparrow; &Downarrow; &Updownarrow; ⇒ ⇐ ⇔

Европейские символы

À Â Ç É È Î Ï Ô Û Ÿ Œ Æ ß Ä Ö Ü à â ç é è ê î ï ô û ù ÿ œ æ ä ö ü

Другие символы

&top; &dashv; ⊥ &vdash; € £ ¥ ¢ ® ™ ‰

koreniz.ru

План-конспект урока по биологии (10 класс) на тему: Конспект интегрированного урока в 10 кл. "Строение и функции плазматической мембраны"

Конспект интегрированного урока

проведенного 15.10.2013г. в 10 классе ГБОУ сш№423

Кронштадтского района, Санкт-Петербурга

На тему:«Строение и функции клеточной мембраны.»

Учитель: Копосова Татьяна Борисовна

Цель урока: Создать условие для комплексного применения знаний на уроке в процессе изучения темы.

Задачи урока:

Образовательная:

  1. углубить знания о строении и функциях клеточной мембраны.
  2. сформировать представление об основных видах транспорта веществ, через мембрану.

Развивающая:

  1. Развивать умение сравнивать, анализировать, делать выводы, развивать образное мышление.
  2. Развитие понятия о соответствии строения выполняемым функциям.
  3. Первичное закрепление полученных знаний с помощью заданий в формате ЕГЭ.

Тип урока: интегрированный  урок

Формы организации учебной деятельности: Фронтальная, индивидуальная.

Методы обучения:Репродуктивный, частично - поисковый

Приемы обучения:рассказ, беседа, сообщения учащихся, демонстрация опытов, работа у интерактивной доски с презентацией и анимационными схемами.

Средства обучения:

  1. интерактивная доска,
  2.  слайды презентации,
  3. раствор моющего средства (для получения мыльных пузырей), пластмассовая трубочка, тонкая швейная игла.
  4.  модель строения плазматической мембраны
  5. интерактивный учебник «Кирилл и Мефодий»
  6. дидактические материалы с заданиями в формате ЕГЭ.
  7. учебник Биология. Общая биология 10 – 11 классы. А.А. Каменский, Е.А. Криксунов, В.В. Пасечник.

Ход урока

  1. Оргмомент.
  2. Тема урока. Целеполагание.

Деятельность учителя.

          Актуализация знаний по теме: «Клеточная теория»

Вопросы фронтального опроса:

  • -Как зовут ученого, в результате открытий которого было введено понятие “клетка”? (Роберт Гук)
  • Что изучает наука «цитология»? (Цитология – одна из биологических наук, наука о строении и жизнедеятельности клетки)
  • Кто является автором клеточной теории?
  • (В 1838 году Шлейденом и Шванном сформулирована клеточная теория, которая получила дальнейшее развитие).
  • Назовите основные понятия современной клеточной теории:

1. Клетка – основная единица строения и развития всех живых организмов.

2. Клетки всех организмов сходны по строению и химическому составу.

3. Размножение клеток происходит путем их деления.

4. По наличию ядра клетки делятся на прокариоты и эукариоты.

И так, клетка – это структурная единица всего живого.

В организме только что родившегося ребенка содержится две тысячи миллиардов клеток. Всю последующую жизнь клетки размножаются, специализируются, работают. И каждая из них – миниатюрный завод, четко налаженное производство со своим энергоснабжением, транспортом, поточными линиями, конвейерами по сборке новых деталей.

Из курса 9 класса вам известно строение и функции органоидов клетки. На протяжении нескольких уроков мы будем расширять знания о строении и функциях органоидов клетки.

Цель нашего урока расширить знания о строении и функциях цитоплазматической мембраны.

Но прежде чем начнем подробно вести разговор о клеточной мембране, давайте вспомним особенности строения клетки и сравним строение растительной и животной клеток. (слайд презентации)

(ответ ученика)

Что такое плазматическая мембрана (или плазмалемма), каково ее строение, свойства и функции мы и должны разобраться на сегодняшнем уроке.

 Ваша задача – в процессе прослушивания записать основные сведения о клеточных мембранах.

Полученные знания вы должны будете применить, отвечая на вопроса теста в конце урока.

Сообщение ученика:  «Строение мембран».(слайд презентации)

Плазматическая мембрана есть во всех клетках (под гликокаликсом – у животных и под клеточной стенкой у других организмов), она обеспечивает взаимодействие клетки с окружающей ее средой. Плазмалемма образует подвижную поверхность клетки, которая может иметь выросты и впячивания, совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы.

Несмотря на эти непрерывные изменения, клетка всегда остается охваченной плотно прилегающей мембраной. Плазматическая мембрана представляет собой тонкую пленку толщиной менее 10 нм. Даже при увеличении ее толщины в 1 млн. раз мы получим величину всего около 1 см, при этом, если всю клетку увеличить в 1 млн. раз, ее размер будет сравним с достаточно большой аудиторией.

Мембрана включает два основных типа молекул: фосфолипиды, образующие бислой в толще мембраны, и белки на ее поверхностях. Эти молекулы удерживаются вместе с помощью нековалентных взаимодействий. Такая модель мембраны, похожая на сэндвич, была предложена американскими учеными Даниели и Давсоном в 1935 году.

 С появлением электронного микроскопа она была подтверждена и несколько видоизменена. В настоящее время принята жидкостно-мозаичная модель мембраны, согласно которой белковые молекулы, плавающие в жидком липидном бислое, образуют в нем своеобразную мозаику. Схема этой современной модели, предложена в 1972 году Сингером и Николсоном.

К некоторым белкам на наружной поверхности ковалентно прикреплены углеводы, образуягликопротеины – своеобразные молекулярные антенны, являющиеся рецепторами. Гликопротеины участвуют в распознавании внешних сигналов, поступающих из окружающей среды или из других частей самого организма, и в реакции клеток на их воздействие. Такое взаимное узнавание – необходимый этап, предшествующий оплодотворению, а также сцеплению клеток в процессе дифференцирования тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунный ответ, в котором гликопротеины играют роль антигенов.

Учитель:   Свойства мембран.(слайд)

Чтобы понять, какими свойствами обладают эти микроскопические структуры, возьмем в качестве модели мыльный пузырь. Дело в том, что молекулы мыла и фосфолипидов, входящих в состав мембран, имеют аналогичное строение (слайд презентации). Мыла (соли жирных кислот) в своем строении имеют гидрофильную головку (из заряженной карбоксильной группы) и длинный гидрофобный хвост. У фосфолипидов, входящих в состав мембран, тоже имеется гидрофобная хвостовая часть (из двух цепей жирных кислот) и большая гидрофильная головка, содержащая отрицательно заряженную группу фосфорной кислоты.

Когда вещества подобного строения смешиваются с водой, их молекулы самопроизвольно принимают такую конфигурацию: гидрофильные головки погружаются в воду, а гидрофобные хвосты в контакт с водой не вступают, контактируя только между собой и с другими гидрофобными веществами, которые могут быть вокруг, например, с воздухом. Оказываясь на границе между двумя средами аналогичной природы, и молекулы мыла, и молекулы фосфолипидов способны к образованию бислоя. Некоторые важные свойства биологических мембран (как и мыльных пузырей), перечисленные далее, объясняются структурой липидного бислоя.

Комментарий учителя физики: Но прежде, чем перейти к свойствам мембран, вспомним .что знаем из  курса физики. На одном из уроков мы рассматривали одно из свойств жидкости-текучесть. Оно  объясняется взаимным притяжением молекул жидкости. И мы обращали внимание на то, что это явление наблюдается в том случае, если расстояние между молекулами жидкости  сравнимо с размером молекулы.

а) Подвижность.

Липидный бислой по существу – жидкое образование, в пределах плоскости которого молекулы могут свободно передвигаться – “течь” без потери контактов в силу взаимного притяжения (учитель  демонстрирует перетекание жидкости в стенке мыльного пузыря, висящего на пластмассовой трубочке). Гидрофобные хвосты могут свободно скользить друг относительно друга.

б) Способность самозамыкаться.

(Учитель демонстрирует, как при протыкании мыльного пузыря и последующего извлечения иглы целостность его стенки сразу же восстанавливается). Благодаря этой способности клетки могут сливаться путем слияния их плазматических мембран (например, при развитии мышечной ткани). Этот же эффект наблюдается при разрезании клетки на две части микроножом, после чего каждая часть оказывается окруженной замкнутой плазматической мембраной.

Комментарий учителя физики: И мы обращали внимание на то, что взаимное притяжение  наблюдается в том случае, если расстояние между молекулами   сравнимо с размером молекулы, если же расстояние становится много больше, то взаимное притяжение не проявляется.

        И со взаимным притяжением молекул связано важное свойство жидкости- смачиваемость и не смачиваемость.(демонстрация опытов с бумагой и  смазанной свечой бумагой) Объяснение: молекулы воды в первом случае сильнее взаимодействуют с молекулами бумаги. Во втором случае-друг с другом сильнее, чем с воском.

в) Избирательная проницаемость. аналогично

То есть, непроницаемость для молекул, растворимых в воде, из-за маслянистой пленки, образованной гидрофобными хвостами фосфолипидных молекул. Чтобы физически проникнуть сквозь такую пленку, вещество само должно быть гидрофобным, или оно может протиснуться через случайные щели, образовавшиеся в результате молекулярных перемещений (мелкие молекулы, например, молекулы воды).

Белки, пронизывающие всю толщу мембраны, или располагающиеся навнешней и внутренней ее поверхностях, помогают клетке обмениваться веществами с окружающей средой. Белковые молекулы обеспечивают избирательный транспорт веществ через мембрану, являясь ферментами, кроме того, внутри белковых молекул или между соседними молекулами образуются поры, через которые в клетки пассивно поступают вода и некоторые ионы.

 Функции плазматической мембраны.(слайд)

Для чего же служит клетке структура с таким строением и свойствами? Оказывается, что она:

  1. Придает клетке форму и защищает от физических и химических повреждений.
  2. Благодаря подвижности, способности образовывать выросты и выпячивания, осуществляет контакт и взаимодействие клеток в тканях и органах.
  3. Отделяет клеточную среду от внешней среды и поддерживает их различия.
  4. Является своеобразным указателем типа клеток в силу того, что белки и углеводы на поверхности мембран и различных клеток неодинаковы.
  5. Регулирует обмен между клеткой и средой, избирательно обеспечивая транспорт в клетку питательных веществ и выведение наружу конечных продуктов обмена.

Учитель: На функции регуляции обмена веществ остановимся более подробно. Транспорт бывает пассивный, не требующий затрат энергии, и активный, энергозависимый, в процессе которого расходуется энергия, получаемая вследствие гидролиза молекул АТФ.

Учитель физики: Я вас опять возвращаю в неживую природу и прошу вспомнить,что является доказательством непрерывного движения молекул в веществе?

Диффузия-это самопроизвольное проникновение молекул одного вещества между молекулами другого. (интернет сайт)

В каких средах наблюдается ?

Во всех трех агрегатных состояниях

От чего зависит скорость?

От температуры вещества и от концентрации

Учитель биологии:

1. Диффузия. (слайд презентации)

Это пассивный процесс; перемещение веществ осуществляется из области с высокой концентрацией в область с низкой концентрацией. Газы и липофильные (жирорастворимые) молекулы диффундируют быстро, ионы и малые полярные молекулы (глюкоза, аминокислоты, жирные кислоты) – медленно. Диффузию ускоряют поры в белковых молекулах.

Разновидностью диффузии является осмос – перемещение воды через мембрану.

2. Активный транспорт при использовании ферментов, встроенных в мембрану.(слайд презентации)

Перенос идет против градиента концентрации с затратами энергии, например, в клетку поступают (“накачиваются”) ионы калия, а из клетки выводятся (“выкачиваются”) ионы натрия. Эта работа сопровождается накоплением на мембране разности электрических потенциалов. Такие клеточные транспортные системы принято называть “насосами”. Аналогично осуществляется транспорт аминокислот и сахаров.

 (демонстрация анимационной схемы из интерактивного учебника «Кирилл и Мефодий)

3. Эндоцитоз.

Это активный транспорт веществ через мембрану в клетку (экзоцитоз – из клетки). В зависимости от характера переносимого через мембрану вещества различают два типа этих процессов: если переносится плотное вещество – фагоцитоз (от греч. “фагос” – пожирать и “цитос” – клетка), если же капли жидкости, содержащие разнообразные вещества в растворенном или взвешенном состоянии, то –пиноцитоз (от греч. “пино” – пить и “цитос” – клетка).

Принцип переноса в обоих случаях идентичен: в том месте, где поверхность клетки соприкасается с частицей или каплей вещества, мембрана прогибается, образует углубление и окружает частицу или каплю жидкости, которая в “мембранной упаковке” погружается внутрь клетки. Здесь образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества. Фагоцитоз широко распространен у животных, а пиноцитоз осуществляется клетками животных, растений, грибов, бактерий и сине-зеленых водорослей

4.Экзоцитоз(слайд презентации)

(демонстрация анимационной схемы из интерактивного учебника «Кирилл и Мефодий)

Выводы:

  1. Плазмалемма – тонкая, около 10 нм толщиной, пленка на поверхности клетки. Она включает липопротеиновые структуры (липиды и белки).
  2. К некоторым поверхностным молекулам белков присоединены углеводные молекулы (они связаны с механизмом распознавания).
  3. Липиды мембраны самопроизвольно образуют бислой. Этим обусловливается избирательная проницаемость мембраны.
  4. Мембранные белки выполняют разнообразные функции, существенно облегчают транспорт через мембрану.
  5. Мембранные липиды и белки способны перемещаться в плоскости мембраны, благодаря чему поверхность клетки не бывает идеально гладкой.

Вывод по уроку:В заключение урока  хочется отметить, что между предметами школьного цикла прослеживается взаимное проникновение.

Вы заметил, что закономерности и явления неживой природы  характерны и для структур живых организмов. Как и наоборот.

Для закрепления информации, полученной на уроке, ученикам предлагаются задания в формате ЕГЭ.

Iвариант.

Часть “А”

Выберите один правильный ответ.

А1. Строение и функции плазматической мембраны обусловлены входящими в ее состав молекулами:

1) гликогена и крахмала
2) ДНК и АТФ
3) белков и липидов
4) клетчатки и глюкозы

А2. Плазматическая мембрана не выполняет функцию:

1) транспорта веществ
2) защиты клетки
3) взаимодействие с другими клетками
4) синтеза белка

А3. Углеводы, входящие в структуру клеточной мембраны, выполняют функцию:

1) транспорта веществ
2) рецепторную
3) образования двойного слоя мембраны
4) фотосинтеза

А4. Белки, входящие в структуру клеточной мембраны выполняют функцию:

1) строительную
2) защитную
3) транспортную
4) все указанные функции

Часть “В”

Альтернативный тест (оцените каждое утверждение, “да” или “нет”):

1) при активном транспорте затрачивается энергия
2) фагоцитоз – это вид эндоцитоза
3) диффузия – это вид активного транспорта
4) клеточная стенка растений состоит из целлюлозы
5) осмос – это диффузия воды
6) пиноцитоз – это вид фагоцитоза
7) плазмалемма состоит из трех слоев липидов
8) у животной клетки нет клеточной стенки
9) плазмалемма обеспечивает связь клетки со средой обитания

IIвариант.

Часть “А”

А5. Фагоцитоз – это:

1) поглощение клеткой жидкости
2) захват твердых частиц
3) транспорт веществ через мембрану
4) ускорение биохимических реакций

А6. Гидрофильные поверхности мембран образованы:

  1. неполярными хвостами липидов
  2.  полярными головками липидов
  3.  белками
  4.  углеводами

А7. Прохождение через мембрану ионов Na+ и K+ происходит путем:

1) диффузии
2) осмоса
3) активного переноса
4) не осуществляется

А8. Через липидный слой мембраны свободно проходит:

1) вода
2) эфир
3) глюкоза
4) крахмал

Часть “В”

Альтернативный тест (оцените каждое утверждение, “да” или “нет”):

1) при активном транспорте затрачивается энергия
2) фагоцитоз – это вид эндоцитоза
3) диффузия – это вид активного транспорта
4) клеточная стенка растений состоит из целлюлозы
5) осмос – это диффузия воды
6) пиноцитоз – это вид фагоцитоза
7) плазмалемма состоит из трех слоев липидов
8) у животной клетки нет клеточной стенки
9) плазмалемма обеспечивает связь клетки со средой обитания

Ответы к заданиям.

Часть “А”.

1–3, 2–4, 3–2, 4–4, 5–2, 6–2, 7–3, 8–2.

Часть “В”.

1, 2, 4, 5, 8, 9 – “да”; 3, 6, 7 – “нет”

nsportal.ru


Смотрите также

     
     
Лекарственные растения для лечения заболеваний на букву А Лекарственные растения для лечения заболеваний на букву Б Лекарственные растения для лечения заболеваний на букву В
Лекарственные растения для лечения заболеваний на букву Г Лекарственные растения для лечения заболеваний на букву Д Лекарственные растения для лечения заболеваний на букву Е
Лекарственные растения для лечения заболеваний на букву Ж Лекарственные растения для лечения заболеваний на букву З Лекарственные растения для лечения заболеваний на букву И
Лекарственные растения для лечения заболеваний на букву К Лекарственные растения для лечения заболеваний на букву Л Лекарственные растения для лечения заболеваний на букву М
Лекарственные растения для лечения заболеваний на букву Н Лекарственные растения для лечения заболеваний на букву О Лекарственные растения для лечения заболеваний на букву П
Лекарственные растения для лечения заболеваний на букву Р Лекарственные растения для лечения заболеваний на букву С Лекарственные растения для лечения заболеваний на букву Т
Лекарственные растения для лечения заболеваний на букву У Лекарственные растения для лечения заболеваний на букву Ф
Лекарственные растения для лечения заболеваний на букву Ц Лекарственные растения для лечения заболеваний на букву Ч Лекарственные растения для лечения заболеваний на букву Ш
Лекарственные растения для лечения заболеваний на букву Э Лекарственные растения для лечения заболеваний на букву Ю Лекарственные растения для лечения заболеваний на букву Я
 
Карта сайта, XML.